[FFmpeg-user] Nvidia professional cards for li e transcoding

Pedro Daniel Costa portalnet2 at outlook.com.br
Thu Aug 23 20:06:27 EEST 2018


This is the datasheet list

For comparison on both models i am thinking


1st

Quadro P6000

SPECIFICATIONS
GPU Memory 24 GB GDDR5X
Memory Interface 384-bit
Memory Bandwidth Up to 432 GB/s
#################################
#####   NVIDIA CUDA® CORES 3840      ####         
#################################
System Interface PCI Express 3.0 x16
Max Power Consumption 250 W
Thermal Solution Active
Form Factor 4.4”H x 10.5” L, Dual Slot,
Full Height
Display Connectors 4x DP 1.4 + DVI-D DL
Max Simultaneous Displays 4 direct, 4 DP1.4 MultiStream
Max DP 1.4 Resolution 7680 x 4320 @ 30 Hz
Max DVI-D DL Resolution 2560 x 1600 @ 60 Hz
Graphics APIs Shader Model 5.1,
OpenGL 4.54
,
DirectX 12.05
,
Vulkan 1.04
Compute APIs CUDA, DirectComput






2nd choise  Tesla K80


TECHNICAL SPECIFICATIONS
Tesla K801
Peak double-precision floating point performance (board)  1.87 Tflops
Peak single-precision floating point performance (board) 5.6 Tflops
GPU 1 x GK110B 2 x GK210
#############################################################
#######################    CUDA cores 4,992    ######################
#############################################################

Memory size per board (GDDR5) 24 GB
Memory bandwidth for board (ECC off)2 480 Gbytes/sec
Architecture features SMX, Dynamic Parallelism, Hyper-Q
System Servers and workstations Servers






3rd choice Tesla V100

GPU Architecture NVIDIA Volta
NVIDIA Tensor
Cores 640
#################################
#######   NVIDIA CUDA® Cores 5,120    ###
#################################
Double-Precision
Performance 7 TFLOPS 7.8 TFLOPS
Single-Precision
Performance 14 TFLOPS 15.7 TFLOPS
Tensor
Performance 112 TFLOPS 125 TFLOPS
GPU Memory 16 GB HBM2
Memory
Bandwidth 900 GB/sec
ECC Yes
Interconnect
Bandwidth 32 GB/sec 300 GB/sec
System Interface PCIe Gen3 NVIDIA NVLink
Form Factor PCIe Full
Height/Length SXM2
Max Power
Comsumption 250 W 300 W
Thermal Solution Passive
Compute APIs CUDA, DirectCompute,
OpenCL™, OpenACC




-----Mensagem original-----
De: ffmpeg-user [mailto:ffmpeg-user-bounces at ffmpeg.org] Em nome de Dennis Mungai
Enviada em: quinta-feira, 23 de agosto de 2018 13:27
Para: FFmpeg user questions
Assunto: Re: [FFmpeg-user] Best Nvidia professional cards for li e transcoding

Hello there,

Does your budget allow for a newer line of NVIDIA GPUs, such as the Quadros based on Pascal?

If so, get the Quadro P6000.

Plenty of VRAM, + all the NVENC encoder features you may need, such as HEVC high-depth encoding and vastly better encoder performance overall.

Refer to this:
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix

If budget is not an issue, go for the jugular with the Tesla P100 (if you don't need HEVC 8k encoder support) OR the Tesla P40 (if you want/need all the features).

I cannot speak for the Volta (GV100) line of GPUs as I'm yet to evaluate them in production.

On 23 August 2018 at 19:02, Pedro Daniel Costa <portalnet2 at outlook.com.br>
wrote:

> Hi guys i am looking for best Nvidia cuda professional card for live 
> transcoding 100Channels, 50Channel HD mpeg4 aac 1980x1080p, and 
> 50Channel sd mpeg2 576x480.
>
> I am thinking TESLA K80, 4992GPU cuda cores, is there a more powerfull 
> card?
>
> Will be running on DELL R910 Server 32Core quad CPU 
> _______________________________________________
> ffmpeg-user mailing list
> ffmpeg-user at ffmpeg.org
> http://ffmpeg.org/mailman/listinfo/ffmpeg-user
>
> To unsubscribe, visit link above, or email 
> ffmpeg-user-request at ffmpeg.org with subject "unsubscribe".
_______________________________________________
ffmpeg-user mailing list
ffmpeg-user at ffmpeg.org
http://ffmpeg.org/mailman/listinfo/ffmpeg-user

To unsubscribe, visit link above, or email ffmpeg-user-request at ffmpeg.org with subject "unsubscribe".


More information about the ffmpeg-user mailing list