[FFmpeg-devel] [PATCH] lavc/aarch64: Add neon implementation for sse4

Martin Storsjö martin at martin.st
Thu Aug 4 11:00:22 EEST 2022


On Mon, 25 Jul 2022, Hubert Mazur wrote:

> Provide neon implementation for sse4 function.
>
> Performance comparison tests are shown below.
> - sse_2_c: 74.0
> - sse_2_neon: 24.0
>
> Benchmarks and tests are run with checkasm tool on AWS Graviton 3.
>
> Signed-off-by: Hubert Mazur <hum at semihalf.com>
> ---
> libavcodec/aarch64/me_cmp_init_aarch64.c |  3 ++
> libavcodec/aarch64/me_cmp_neon.S         | 65 ++++++++++++++++++++++++
> 2 files changed, 68 insertions(+)
>
> diff --git a/libavcodec/aarch64/me_cmp_init_aarch64.c b/libavcodec/aarch64/me_cmp_init_aarch64.c
> index 3ff5767bd0..72a2062e7e 100644
> --- a/libavcodec/aarch64/me_cmp_init_aarch64.c
> +++ b/libavcodec/aarch64/me_cmp_init_aarch64.c
> @@ -32,6 +32,8 @@ int ff_pix_abs16_x2_neon(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
> 
> int sse16_neon(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
>                   ptrdiff_t stride, int h);
> +int sse4_neon(MpegEncContext *v, uint8_t *pix1, uint8_t *pix2,
> +                  ptrdiff_t stride, int h);
> 
> av_cold void ff_me_cmp_init_aarch64(MECmpContext *c, AVCodecContext *avctx)
> {
> @@ -44,5 +46,6 @@ av_cold void ff_me_cmp_init_aarch64(MECmpContext *c, AVCodecContext *avctx)
>
>         c->sad[0] = ff_pix_abs16_neon;
>         c->sse[0] = sse16_neon;
> +        c->sse[2] = sse4_neon;
>     }
> }
> diff --git a/libavcodec/aarch64/me_cmp_neon.S b/libavcodec/aarch64/me_cmp_neon.S
> index 98c912b608..3336d88848 100644
> --- a/libavcodec/aarch64/me_cmp_neon.S
> +++ b/libavcodec/aarch64/me_cmp_neon.S
> @@ -352,3 +352,68 @@ function sse16_neon, export=1
>         ret
> 
> endfunc
> +
> +function sse4_neon, export=1
> +        // x0 - unused
> +        // x1 - pix1
> +        // x2 - pix2
> +        // x3 - stride
> +        // w4 - h
> +
> +        movi            d18, #0
> +        movi            d17, #0

In the current implementation, it doesn't seem like d17 needs to be 
initialized here

> +        cmp             w4, #4
> +        b.le            2f
> +
> +// make 4 iterations at once
> +1:
> +
> +        // res = abs(pix1[0] - pix2[0])
> +        // res * res
> +
> +        ld1             {v0.s}[0], [x1], x3             // Load pix1, first iteration
> +        ld1             {v1.s}[0], [x2], x3             // Load pix2, first iteration
> +        uabdl           v30.8h, v0.8b, v1.8b            // Absolute difference, first iteration

Right now, half of the values calculated by uabdl are unused; you could 
try loading two iterations into v0.s[0] and v0.s[1] so that the full 
.8b register gets used. Doing that would reduce the number of uabdl 
instructions from 4 to 2 - but it might make it harder to interleave 
instructions efficiently. So after all, maybe it's not worth if, it we 
can make the loads more efficiently interleaved this way?

Again, also here, it'd be good to interleave things more efficiently, e.g. 
like this:

    ld1 first
    ld1 first
    ld1 second
    ld1 second
    uabdl first
    ld1 third
    ld1 third
    uabdl second
    umull first
    ld1 fourth
    ld1 fourth
    uabdl third
    umlal second
    uabdl fourth
    umlal third
    umlal fourth

> +        ld1             {v2.s}[0], [x1], x3             // Load pix1, second iteration
> +        ld1             {v3.s}[0], [x2], x3             // Load pix2, second iteration
> +        umull           v16.4s, v30.4h, v30.4h          // Multiply vectors, first iteration
> +        uabdl           v29.8h, v2.8b, v3.8b            // Absolute difference, second iteration
> +        ld1             {v4.s}[0], [x1], x3             // Load pix1, third iteration
> +        ld1             {v5.s}[0], [x2], x3             // Load pix2, third iteration
> +        umlal           v16.4s, v29.4h, v29.4h          // Multiply and accumulate, second iteration
> +        uabdl           v28.8h, v4.8b, v5.8b            // Absolute difference, third iteration
> +        ld1             {v6.s}[0], [x1], x3             // Load pix1, fourth iteration
> +        ld1             {v7.s}[0], [x2], x3             // Load pix2, fourth iteration
> +        umlal           v16.4s, v28.4h, v28.4h          // Multiply and accumulate, third iteration
> +        uabdl           v27.8h, v6.8b, v7.8b            // Absolue difference, fourth iteration
> +        umlal           v16.4s, v27.4h, v27.4h          // Multiply and accumulate, fourth iteration
> +
> +        uaddlv          d17, v16.4s                     // Add vector
> +        add             d18, d18, d17

As usual, don't do any *add*v within the loop, defer it as far as 
possible. Here you're accumulating in 32 bit elements, so it will surely 
fit the results from the whole algorithm.

Also, if you get rid of the uaddlv here, you can also accumulate into two 
separate .4s registers that you only add at the end; that allows two umlal 
instructions to possibly execute in parallel without waiting for each 
other (provided that the cpu has enough execution units for that).

// Martin



More information about the ffmpeg-devel mailing list