[FFmpeg-devel] [PATCH V2 3/6] lavfi/dnn_backend_tf: Request-based Execution

Guo, Yejun yejun.guo at intel.com
Sun Jul 11 15:54:58 EEST 2021



> -----Original Message-----
> From: ffmpeg-devel <ffmpeg-devel-bounces at ffmpeg.org> On Behalf Of
> Shubhanshu Saxena
> Sent: 2021年7月5日 18:31
> To: ffmpeg-devel at ffmpeg.org
> Cc: Shubhanshu Saxena <shubhanshu.e01 at gmail.com>
> Subject: [FFmpeg-devel] [PATCH V2 3/6] lavfi/dnn_backend_tf: Request-
> based Execution
> 
> This commit uses TFRequestItem and the existing sync execution mechanism
> to use request-based execution. It will help in adding async functionality to
> the TensorFlow backend later.
> 
> Signed-off-by: Shubhanshu Saxena <shubhanshu.e01 at gmail.com>
> ---
>  libavfilter/dnn/dnn_backend_common.h   |   3 +
>  libavfilter/dnn/dnn_backend_openvino.c |   2 +-
>  libavfilter/dnn/dnn_backend_tf.c       | 156 ++++++++++++++-----------
>  3 files changed, 91 insertions(+), 70 deletions(-)
> 
> diff --git a/libavfilter/dnn/dnn_backend_common.h
> b/libavfilter/dnn/dnn_backend_common.h
> index df59615f40..5281fdfed1 100644
> --- a/libavfilter/dnn/dnn_backend_common.h
> +++ b/libavfilter/dnn/dnn_backend_common.h
> @@ -26,6 +26,9 @@
> 
>  #include "../dnn_interface.h"
> 
> +#define DNN_BACKEND_COMMON_OPTIONS \
> +    { "nireq",           "number of request",             OFFSET(options.nireq),
> AV_OPT_TYPE_INT,    { .i64 = 0 },     0, INT_MAX, FLAGS },
> +
>  // one task for one function call from dnn interface  typedef struct TaskItem
> {
>      void *model; // model for the backend diff --git
> a/libavfilter/dnn/dnn_backend_openvino.c
> b/libavfilter/dnn/dnn_backend_openvino.c
> index 3295fc79d3..f34b8150f5 100644
> --- a/libavfilter/dnn/dnn_backend_openvino.c
> +++ b/libavfilter/dnn/dnn_backend_openvino.c
> @@ -75,7 +75,7 @@ typedef struct RequestItem {  #define FLAGS
> AV_OPT_FLAG_FILTERING_PARAM  static const AVOption
> dnn_openvino_options[] = {
>      { "device", "device to run model", OFFSET(options.device_type),
> AV_OPT_TYPE_STRING, { .str = "CPU" }, 0, 0, FLAGS },
> -    { "nireq",  "number of request",   OFFSET(options.nireq),
> AV_OPT_TYPE_INT,    { .i64 = 0 },     0, INT_MAX, FLAGS },
> +    DNN_BACKEND_COMMON_OPTIONS
>      { "batch_size",  "batch size per request", OFFSET(options.batch_size),
> AV_OPT_TYPE_INT,    { .i64 = 1 },     1, 1000, FLAGS},
>      { "input_resizable", "can input be resizable or not",
> OFFSET(options.input_resizable), AV_OPT_TYPE_BOOL,   { .i64 = 0 },     0, 1,
> FLAGS },
>      { NULL }
> diff --git a/libavfilter/dnn/dnn_backend_tf.c
> b/libavfilter/dnn/dnn_backend_tf.c
> index 578748eb35..e8007406c8 100644
> --- a/libavfilter/dnn/dnn_backend_tf.c
> +++ b/libavfilter/dnn/dnn_backend_tf.c
> @@ -35,11 +35,13 @@
>  #include "dnn_backend_native_layer_maximum.h"
>  #include "dnn_io_proc.h"
>  #include "dnn_backend_common.h"
> +#include "safe_queue.h"
>  #include "queue.h"
>  #include <tensorflow/c/c_api.h>
> 
>  typedef struct TFOptions{
>      char *sess_config;
> +    uint32_t nireq;
>  } TFOptions;
> 
>  typedef struct TFContext {
> @@ -53,6 +55,7 @@ typedef struct TFModel{
>      TF_Graph *graph;
>      TF_Session *session;
>      TF_Status *status;
> +    SafeQueue *request_queue;
>      Queue *inference_queue;
>  } TFModel;
> 
> @@ -77,12 +80,13 @@ typedef struct TFRequestItem {  #define FLAGS
> AV_OPT_FLAG_FILTERING_PARAM  static const AVOption
> dnn_tensorflow_options[] = {
>      { "sess_config", "config for SessionOptions", OFFSET(options.sess_config),
> AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
> +    DNN_BACKEND_COMMON_OPTIONS
>      { NULL }
>  };
> 
>  AVFILTER_DEFINE_CLASS(dnn_tensorflow);
> 
> -static DNNReturnType execute_model_tf(Queue *inference_queue);
> +static DNNReturnType execute_model_tf(TFRequestItem *request, Queue
> +*inference_queue);
> 
>  static void free_buffer(void *data, size_t length)  { @@ -237,6 +241,7 @@
> static DNNReturnType get_output_tf(void *model, const char *input_name,
> int inpu
>      AVFrame *in_frame = av_frame_alloc();
>      AVFrame *out_frame = NULL;
>      TaskItem task;
> +    TFRequestItem *request;
> 
>      if (!in_frame) {
>          av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input
> frame\n"); @@ -267,7 +272,13 @@ static DNNReturnType
> get_output_tf(void *model, const char *input_name, int inpu
>          return DNN_ERROR;
>      }
> 
> -    ret = execute_model_tf(tf_model->inference_queue);
> +    request = ff_safe_queue_pop_front(tf_model->request_queue);
> +    if (!request) {
> +        av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
> +        return DNN_ERROR;
> +    }
> +
> +    ret = execute_model_tf(request, tf_model->inference_queue);
>      *output_width = out_frame->width;
>      *output_height = out_frame->height;
> 
> @@ -771,6 +782,7 @@ DNNModel *ff_dnn_load_model_tf(const char
> *model_filename, DNNFunctionType func_  {
>      DNNModel *model = NULL;
>      TFModel *tf_model = NULL;
> +    TFContext *ctx = NULL;
> 
>      model = av_mallocz(sizeof(DNNModel));
>      if (!model){
> @@ -782,13 +794,14 @@ DNNModel *ff_dnn_load_model_tf(const char
> *model_filename, DNNFunctionType func_
>          av_freep(&model);
>          return NULL;
>      }
> -    tf_model->ctx.class = &dnn_tensorflow_class;
>      tf_model->model = model;
> +    ctx = &tf_model->ctx;
> +    ctx->class = &dnn_tensorflow_class;
> 
>      //parse options
> -    av_opt_set_defaults(&tf_model->ctx);
> -    if (av_opt_set_from_string(&tf_model->ctx, options, NULL, "=", "&") < 0)
> {
> -        av_log(&tf_model->ctx, AV_LOG_ERROR, "Failed to parse options
> \"%s\"\n", options);
> +    av_opt_set_defaults(ctx);
> +    if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) {
> +        av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n",
> + options);
>          av_freep(&tf_model);
>          av_freep(&model);
>          return NULL;
> @@ -803,6 +816,18 @@ DNNModel *ff_dnn_load_model_tf(const char
> *model_filename, DNNFunctionType func_
>          }
>      }
> 
> +    if (ctx->options.nireq <= 0) {
> +        ctx->options.nireq = av_cpu_count() / 2 + 1;
> +    }
> +
> +    tf_model->request_queue = ff_safe_queue_create();
> +
> +    for (int i = 0; i < ctx->options.nireq; i++) {
> +        TFRequestItem *item = av_mallocz(sizeof(*item));
> +        item->infer_request = tf_create_inference_request();
> +        ff_safe_queue_push_back(tf_model->request_queue, item);
> +    }
> +
>      tf_model->inference_queue = ff_queue_create();
>      model->model = tf_model;
>      model->get_input = &get_input_tf;
> @@ -814,42 +839,42 @@ DNNModel *ff_dnn_load_model_tf(const char
> *model_filename, DNNFunctionType func_
>      return model;
>  }
> 
> -static DNNReturnType execute_model_tf(Queue *inference_queue)
> +static DNNReturnType execute_model_tf(TFRequestItem *request, Queue
> +*inference_queue)
>  {
> -    TF_Output *tf_outputs;
>      TFModel *tf_model;
>      TFContext *ctx;
> +    TFInferRequest *infer_request;
>      InferenceItem *inference;
>      TaskItem *task;
>      DNNData input, *outputs;
> -    TF_Tensor **output_tensors;
> -    TF_Output tf_input;
> -    TF_Tensor *input_tensor;
> 
>      inference = ff_queue_pop_front(inference_queue);
>      av_assert0(inference);
>      task = inference->task;
>      tf_model = task->model;
>      ctx = &tf_model->ctx;
> +    request->inference = inference;
> 
>      if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS)
>          return DNN_ERROR;
> 
> +    infer_request = request->infer_request;
>      input.height = task->in_frame->height;
>      input.width = task->in_frame->width;
> 
> -    tf_input.oper = TF_GraphOperationByName(tf_model->graph, task-
> >input_name);
> -    if (!tf_input.oper){
> +    infer_request->tf_input = av_malloc(sizeof(TF_Output));
> +    infer_request->tf_input->oper = TF_GraphOperationByName(tf_model-
> >graph, task->input_name);
> +    if (!infer_request->tf_input->oper){
>          av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task-
> >input_name);
>          return DNN_ERROR;
>      }
> -    tf_input.index = 0;
> -    input_tensor = allocate_input_tensor(&input);
> -    if (!input_tensor){
> +    infer_request->tf_input->index = 0;
> +    infer_request->input_tensor = allocate_input_tensor(&input);
> +    if (!infer_request->input_tensor){
>          av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input
> tensor\n");
>          return DNN_ERROR;
>      }
> -    input.data = (float *)TF_TensorData(input_tensor);
> +    input.data = (float *)TF_TensorData(infer_request->input_tensor);
> 
>      switch (tf_model->model->func_type) {
>      case DFT_PROCESS_FRAME:
> @@ -869,60 +894,52 @@ static DNNReturnType execute_model_tf(Queue
> *inference_queue)
>          break;
>      }
> 
> -    tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output));
> -    if (tf_outputs == NULL) {
> -        TF_DeleteTensor(input_tensor);
> -        av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for
> *tf_outputs\n"); \
> +    infer_request->tf_outputs = av_malloc_array(task->nb_output,
> sizeof(TF_Output));
> +    if (infer_request->tf_outputs == NULL) {
> +        av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for
> + *tf_outputs\n");
>          return DNN_ERROR;
>      }
> 
> -    output_tensors = av_mallocz_array(task->nb_output,
> sizeof(*output_tensors));
> -    if (!output_tensors) {
> -        TF_DeleteTensor(input_tensor);
> -        av_freep(&tf_outputs);
> -        av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output
> tensor\n"); \
> +    infer_request->output_tensors = av_mallocz_array(task->nb_output,
> sizeof(*infer_request->output_tensors));
> +    if (!infer_request->output_tensors) {
> +        av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output
> + tensor\n");
>          return DNN_ERROR;
>      }
> 
>      for (int i = 0; i < task->nb_output; ++i) {
> -        tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph,
> task->output_names[i]);
> -        if (!tf_outputs[i].oper) {
> -            TF_DeleteTensor(input_tensor);
> -            av_freep(&tf_outputs);
> -            av_freep(&output_tensors);
> -            av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in
> model\n", task->output_names[i]); \
> +        infer_request->output_tensors[i] = NULL;
> +        infer_request->tf_outputs[i].oper =
> TF_GraphOperationByName(tf_model->graph, task->output_names[i]);
> +        if (!infer_request->tf_outputs[i].oper) {
> +            av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in
> + model\n", task->output_names[i]);
>              return DNN_ERROR;
>          }
> -        tf_outputs[i].index = 0;
> +        infer_request->tf_outputs[i].index = 0;
>      }
> 
>      TF_SessionRun(tf_model->session, NULL,
> -                  &tf_input, &input_tensor, 1,
> -                  tf_outputs, output_tensors, task->nb_output,
> -                  NULL, 0, NULL, tf_model->status);
> +                    infer_request->tf_input, &infer_request->input_tensor, 1,
> +                    infer_request->tf_outputs, infer_request->output_tensors,
> +                    task->nb_output, NULL, 0, NULL,
> +                    tf_model->status);
>      if (TF_GetCode(tf_model->status) != TF_OK) {
> -        TF_DeleteTensor(input_tensor);
> -        av_freep(&tf_outputs);
> -        av_freep(&output_tensors);
> -        av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing
> model\n");
> -        return DNN_ERROR;
> +            tf_free_request(infer_request);
> +            av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing
> model\n");
> +            return DNN_ERROR;
>      }
> 
>      outputs = av_malloc_array(task->nb_output, sizeof(*outputs));
>      if (!outputs) {
> -        TF_DeleteTensor(input_tensor);
> -        av_freep(&tf_outputs);
> -        av_freep(&output_tensors);
> -        av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for
> *outputs\n"); \
> +        tf_free_request(infer_request);
> +        av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for
> + *outputs\n");
>          return DNN_ERROR;
>      }
> 
>      for (uint32_t i = 0; i < task->nb_output; ++i) {
> -        outputs[i].height = TF_Dim(output_tensors[i], 1);
> -        outputs[i].width = TF_Dim(output_tensors[i], 2);
> -        outputs[i].channels = TF_Dim(output_tensors[i], 3);
> -        outputs[i].data = TF_TensorData(output_tensors[i]);
> -        outputs[i].dt = TF_TensorType(output_tensors[i]);
> +        outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1);
> +        outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2);
> +        outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3);
> +        outputs[i].data = TF_TensorData(infer_request->output_tensors[i]);
> +        outputs[i].dt =
> + TF_TensorType(infer_request->output_tensors[i]);
>      }
>      switch (tf_model->model->func_type) {
>      case DFT_PROCESS_FRAME:
> @@ -946,30 +963,15 @@ static DNNReturnType execute_model_tf(Queue
> *inference_queue)
>          tf_model->model->detect_post_proc(task->out_frame, outputs, task-
> >nb_output, tf_model->model->filter_ctx);
>          break;
>      default:
> -        for (uint32_t i = 0; i < task->nb_output; ++i) {
> -            if (output_tensors[i]) {
> -                TF_DeleteTensor(output_tensors[i]);
> -            }
> -        }
> -        TF_DeleteTensor(input_tensor);
> -        av_freep(&output_tensors);
> -        av_freep(&tf_outputs);
> -        av_freep(&outputs);
> +        tf_free_request(infer_request);
> 
>          av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this
> kind of dnn filter now\n");
>          return DNN_ERROR;
>      }
> -    for (uint32_t i = 0; i < task->nb_output; ++i) {
> -        if (output_tensors[i]) {
> -            TF_DeleteTensor(output_tensors[i]);
> -        }
> -    }
>      task->inference_done++;
> -    TF_DeleteTensor(input_tensor);
> -    av_freep(&output_tensors);
> -    av_freep(&tf_outputs);
> +    tf_free_request(infer_request);
>      av_freep(&outputs);
> -    return DNN_SUCCESS;
> +    ff_safe_queue_push_back(tf_model->request_queue, request);
>      return (task->inference_done == task->inference_todo) ? DNN_SUCCESS :
> DNN_ERROR;  }
> 
> @@ -978,6 +980,7 @@ DNNReturnType ff_dnn_execute_model_tf(const
> DNNModel *model, DNNExecBaseParams *
>      TFModel *tf_model = model->model;
>      TFContext *ctx = &tf_model->ctx;
>      TaskItem task;
> +    TFRequestItem *request;
> 
>      if (ff_check_exec_params(ctx, DNN_TF, model->func_type,
> exec_params) != 0) {
>          return DNN_ERROR;
> @@ -991,7 +994,14 @@ DNNReturnType ff_dnn_execute_model_tf(const
> DNNModel *model, DNNExecBaseParams *
>          av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
>          return DNN_ERROR;
>      }
> -    return execute_model_tf(tf_model->inference_queue);
> +
> +    request = ff_safe_queue_pop_front(tf_model->request_queue);
> +    if (!request) {
> +        av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
> +        return DNN_ERROR;
> +    }
> +
> +    return execute_model_tf(request, tf_model->inference_queue);
>  }
> 
>  void ff_dnn_free_model_tf(DNNModel **model) @@ -1000,6 +1010,14
> @@ void ff_dnn_free_model_tf(DNNModel **model)
> 
>      if (*model){
>          tf_model = (*model)->model;
> +        while (ff_safe_queue_size(tf_model->request_queue) != 0) {
> +            TFRequestItem *item = ff_safe_queue_pop_front(tf_model-
> >request_queue);
> +            tf_free_request(item->infer_request);
> +            av_freep(&item->infer_request);
> +            av_freep(&item);
> +        }
> +        ff_safe_queue_destroy(tf_model->request_queue);
> +
>          while (ff_queue_size(tf_model->inference_queue) != 0) {
>              InferenceItem *item = ff_queue_pop_front(tf_model-
> >inference_queue);
>              av_freep(&item);

LGTM, will push soon.



More information about the ffmpeg-devel mailing list