[FFmpeg-devel] [PATCH v2 1/3] avfilter: add v360 filter
Li, Zhong
zhong.li at intel.com
Wed Aug 14 09:57:00 EEST 2019
> From: ffmpeg-devel [mailto:ffmpeg-devel-bounces at ffmpeg.org] On Behalf
> Of Eugene Lyapustin
> Sent: Wednesday, August 14, 2019 9:14 AM
> To: ffmpeg-devel at ffmpeg.org
> Subject: [FFmpeg-devel] [PATCH v2 1/3] avfilter: add v360 filter
>
> Signed-off-by: Eugene Lyapustin <unishifft at gmail.com>
> ---
> doc/filters.texi | 137 +++
> libavfilter/Makefile | 1 +
> libavfilter/allfilters.c | 1 +
> libavfilter/vf_v360.c | 1847
> ++++++++++++++++++++++++++++++++++++++
Probably you also want to update the Changelog?
> 4 files changed, 1986 insertions(+)
> create mode 100644 libavfilter/vf_v360.c
>
> diff --git a/doc/filters.texi b/doc/filters.texi
> index e081cdc7bc..6168a3502a 100644
> --- a/doc/filters.texi
> +++ b/doc/filters.texi
> @@ -17879,6 +17879,143 @@ Force a constant quantization parameter. If
> not set, the filter will use the QP
> from the video stream (if available).
> @end table
>
> + at section v360
> +
> +Convert 360 videos between various formats.
> +
> +The filter accepts the following options:
> +
> + at table @option
> +
> + at item input
> + at item output
> +Set format of the input/output video.
> +
> +Available formats:
> +
> + at table @samp
> +
> + at item e
> +Equirectangular projection.
> +
> + at item c3x2
> + at item c6x1
> +Cubemap with 3x2/6x1 layout.
> +
> +Format specific options:
> +
> + at table @option
> + at item in_forder
> + at item out_forder
> +Set order of faces for the input/output cubemap. Choose one direction for
> each position.
> +
> +Designation of directions:
> + at table @samp
> + at item r
> +right
> + at item l
> +left
> + at item u
> +up
> + at item d
> +down
> + at item f
> +forward
> + at item b
> +back
> + at end table
> +
> +Default value is @b{@samp{rludfb}}.
> +
> + at item in_frot
> + at item out_frot
> +Set rotation of faces for the input/output cubemap. Choose one angle for
> each position.
> +
> +Designation of angles:
> + at table @samp
> + at item 0
> +0 degrees clockwise
> + at item 1
> +90 degrees clockwise
> + at item 2
> +180 degrees clockwise
> + at item 4
> +270 degrees clockwise
> + at end table
> +
> +Default value is @b{@samp{000000}}.
> + at end table
> +
> + at item eac
> +Equi-Angular Cubemap.
> +
> + at item flat
> +Regular video. @i{(output only)}
> +
> +Format specific options:
> + at table @option
> + at item h_fov
> + at item v_fov
> +Set horizontal/vertical field of view. Values in degrees.
> + at end table
> + at end table
> +
> + at item interp
> +Set interpolation method.@*
> + at i{Note: more complex interpolation methods require much more memory
> to run.}
> +
> +Available methods:
> +
> + at table @samp
> + at item near
> + at item nearest
> +Nearest neighbour.
> + at item line
> + at item linear
> +Bilinear interpolation.
> + at item cube
> + at item cubic
> +Bicubic interpolation.
> + at item lanc
> + at item lanczos
> +Lanczos interpolation.
> + at end table
> +
> +Default value is @b{@samp{line}}.
> +
> + at item w
> + at item h
> +Set the output video resolution.
> +
> +Default resolution depends on formats.
> +
> + at item yaw
> + at item pitch
> + at item roll
> +Set rotation for the output video. Values in degrees.
> +
> + at item hflip
> + at item vflip
> + at item dflip
> +Flip the output video horizontally/vertically/in-depth. Boolean values.
> +
> + at end table
> +
> + at subsection Examples
> +
> + at itemize
> + at item
> +Convert equirectangular video to cubemap with 3x2 layout using bicubic
> interpolation:
> + at example
> +ffmpeg -i input.mkv -vf v360=e:c3x2:cubic output.mkv
> + at end example
> + at item
> +Extract back view of Equi-Angular Cubemap:
> + at example
> +ffmpeg -i input.mkv -vf v360=eac:flat:yaw=180 output.mkv
> + at end example
> + at end itemize
> +
> @section vaguedenoiser
>
> Apply a wavelet based denoiser.
> diff --git a/libavfilter/Makefile b/libavfilter/Makefile
> index efc7bbb153..345f7c95cd 100644
> --- a/libavfilter/Makefile
> +++ b/libavfilter/Makefile
> @@ -410,6 +410,7 @@ OBJS-$(CONFIG_UNSHARP_FILTER)
> += vf_unsharp.o
> OBJS-$(CONFIG_UNSHARP_OPENCL_FILTER) +=
> vf_unsharp_opencl.o opencl.o \
>
> opencl/unsharp.o
> OBJS-$(CONFIG_USPP_FILTER) += vf_uspp.o
> +OBJS-$(CONFIG_V360_FILTER) += vf_v360.o
> OBJS-$(CONFIG_VAGUEDENOISER_FILTER) +=
> vf_vaguedenoiser.o
> OBJS-$(CONFIG_VECTORSCOPE_FILTER) += vf_vectorscope.o
> OBJS-$(CONFIG_VFLIP_FILTER) += vf_vflip.o
> diff --git a/libavfilter/allfilters.c b/libavfilter/allfilters.c
> index abd726d616..5799fb4b3c 100644
> --- a/libavfilter/allfilters.c
> +++ b/libavfilter/allfilters.c
> @@ -390,6 +390,7 @@ extern AVFilter ff_vf_unpremultiply;
> extern AVFilter ff_vf_unsharp;
> extern AVFilter ff_vf_unsharp_opencl;
> extern AVFilter ff_vf_uspp;
> +extern AVFilter ff_vf_v360;
> extern AVFilter ff_vf_vaguedenoiser;
> extern AVFilter ff_vf_vectorscope;
> extern AVFilter ff_vf_vflip;
> diff --git a/libavfilter/vf_v360.c b/libavfilter/vf_v360.c
> new file mode 100644
> index 0000000000..5c377827b0
> --- /dev/null
> +++ b/libavfilter/vf_v360.c
> @@ -0,0 +1,1847 @@
> +/*
> + * Copyright (c) 2019 Eugene Lyapustin
> + *
> + * This file is part of FFmpeg.
> + *
> + * FFmpeg is free software; you can redistribute it and/or
> + * modify it under the terms of the GNU Lesser General Public
> + * License as published by the Free Software Foundation; either
> + * version 2.1 of the License, or (at your option) any later version.
> + *
> + * FFmpeg is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> GNU
> + * Lesser General Public License for more details.
> + *
> + * You should have received a copy of the GNU Lesser General Public
> + * License along with FFmpeg; if not, write to the Free Software
> + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
> USA
> + */
> +
> +/**
> + * @file
> + * 360 video conversion filter.
> + * Principle of operation:
> + *
> + * (for each pixel in output frame)\n
> + * 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j)\n
> + * 2) Apply 360 operations (rotation, mirror) to (x, y, z)\n
> + * 3) Calculate pixel position (u, v) in input frame\n
> + * 4) Calculate interpolation window and weight for each pixel
> + *
> + * (for each frame)\n
> + * 5) Remap input frame to output frame using precalculated data\n
> + */
> +
> +#include "libavutil/eval.h"
> +#include "libavutil/imgutils.h"
> +#include "libavutil/pixdesc.h"
> +#include "libavutil/opt.h"
> +#include "avfilter.h"
> +#include "formats.h"
> +#include "internal.h"
> +#include "video.h"
> +
> +enum Projections {
> + EQUIRECTANGULAR,
> + CUBEMAP_3_2,
> + CUBEMAP_6_1,
> + EQUIANGULAR,
> + FLAT,
> + NB_PROJECTIONS,
> +};
> +
> +enum InterpMethod {
> + NEAREST,
> + BILINEAR,
> + BICUBIC,
> + LANCZOS,
> + NB_INTERP_METHODS,
> +};
> +
> +enum Faces {
> + TOP_LEFT,
> + TOP_MIDDLE,
> + TOP_RIGHT,
> + BOTTOM_LEFT,
> + BOTTOM_MIDDLE,
> + BOTTOM_RIGHT,
> + NB_FACES,
> +};
> +
> +enum Direction {
> + RIGHT, ///< Axis +X
> + LEFT, ///< Axis -X
> + UP, ///< Axis +Y
> + DOWN, ///< Axis -Y
> + FRONT, ///< Axis -Z
> + BACK, ///< Axis +Z
> + NB_DIRECTIONS,
> +};
> +
> +enum Rotation {
> + ROT_0,
> + ROT_90,
> + ROT_180,
> + ROT_270,
> + NB_ROTATIONS,
> +};
> +
> +typedef struct V360Context {
> + const AVClass *class;
> + int in, out;
> + int interp;
> + int width, height;
> + char* in_forder;
> + char* out_forder;
> + char* in_frot;
> + char* out_frot;
> +
> + int in_cubemap_face_order[6];
> + int out_cubemap_direction_order[6];
> + int in_cubemap_face_rotation[6];
> + int out_cubemap_face_rotation[6];
> +
> + float yaw, pitch, roll;
> +
> + int h_flip, v_flip, d_flip;
> +
> + float h_fov, v_fov;
> + float flat_range[3];
> +
> + int planewidth[4], planeheight[4];
> + int inplanewidth[4], inplaneheight[4];
> + int nb_planes;
> +
> + void *remap[4];
> +
> + int (*remap_slice)(AVFilterContext *ctx, void *arg, int jobnr, int
> nb_jobs);
> +} V360Context;
> +
> +typedef struct ThreadData {
> + V360Context *s;
> + AVFrame *in;
> + AVFrame *out;
> + int nb_planes;
> +} ThreadData;
> +
> +#define OFFSET(x) offsetof(V360Context, x)
> +#define FLAGS
> AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
> +
> +static const AVOption v360_options[] = {
> + { "input", "set input projection", OFFSET(in),
> AV_OPT_TYPE_INT, {.i64=EQUIRECTANGULAR}, 0,
> NB_PROJECTIONS-1, FLAGS, "in" },
> + { "e", "equirectangular", 0,
> AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0,
> 0, FLAGS, "in" },
> + { "c3x2", "cubemap3x2",
> 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0,
> 0, FLAGS, "in" },
> + { "c6x1", "cubemap6x1",
> 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0,
> 0, FLAGS, "in" },
> + { "eac", "equi-angular",
> 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0,
> 0, FLAGS, "in" },
> + { "output", "set output projection", OFFSET(out),
> AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0,
> NB_PROJECTIONS-1, FLAGS, "out" },
> + { "e", "equirectangular", 0,
> AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0,
> 0, FLAGS, "out" },
> + { "c3x2", "cubemap3x2",
> 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0,
> 0, FLAGS, "out" },
> + { "c6x1", "cubemap6x1",
> 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0,
> 0, FLAGS, "out" },
> + { "eac", "equi-angular",
> 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0,
> 0, FLAGS, "out" },
> + { "flat", "regular video", 0,
> AV_OPT_TYPE_CONST, {.i64=FLAT}, 0,
> 0, FLAGS, "out" },
> + { "interp", "set interpolation method", OFFSET(interp),
> AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0,
> NB_INTERP_METHODS-1, FLAGS, "interp" },
> + { "near", "nearest neighbour", 0,
> AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0,
> 0, FLAGS, "interp" },
> + { "nearest", "nearest neighbour", 0,
> AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0,
> 0, FLAGS, "interp" },
> + { "line", "bilinear interpolation", 0,
> AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0,
> 0, FLAGS, "interp" },
> + { "linear", "bilinear interpolation", 0,
> AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0,
> 0, FLAGS, "interp" },
> + { "cube", "bicubic interpolation", 0,
> AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0,
> 0, FLAGS, "interp" },
> + { "cubic", "bicubic interpolation", 0,
> AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0,
> 0, FLAGS, "interp" },
> + { "lanc", "lanczos interpolation", 0,
> AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0,
> 0, FLAGS, "interp" },
> + { "lanczos", "lanczos interpolation", 0,
> AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0,
> 0, FLAGS, "interp" },
> + { "w", "output width", OFFSET(width),
> AV_OPT_TYPE_INT, {.i64=0}, 0,
> INT_MAX, FLAGS, "w"},
> + { "h", "output height", OFFSET(height),
> AV_OPT_TYPE_INT, {.i64=0}, 0,
> INT_MAX, FLAGS, "h"},
> + { "in_forder", "input cubemap face order", OFFSET(in_forder),
> AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1,
> FLAGS, "in_forder"},
> + {"out_forder", "output cubemap face order", OFFSET(out_forder),
> AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1,
> FLAGS, "out_forder"},
> + { "in_frot", "input cubemap face rotation", OFFSET(in_frot),
> AV_OPT_TYPE_STRING, {.str="000000"}, 0,
> NB_DIRECTIONS-1, FLAGS, "in_frot"},
> + { "out_frot", "output cubemap face rotation",OFFSET(out_frot),
> AV_OPT_TYPE_STRING, {.str="000000"}, 0,
> NB_DIRECTIONS-1, FLAGS, "out_frot"},
> + { "yaw", "yaw rotation",
> OFFSET(yaw), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f,
> 180.f, FLAGS, "yaw"},
> + { "pitch", "pitch rotation", OFFSET(pitch),
> AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,
> FLAGS, "pitch"},
> + { "roll", "roll rotation", OFFSET(roll),
> AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f,
> FLAGS, "roll"},
> + { "h_fov", "horizontal field of view", OFFSET(h_fov),
> AV_OPT_TYPE_FLOAT, {.dbl=90.f}, 0.f, 180.f,
> FLAGS, "h_fov"},
> + { "v_fov", "vertical field of view", OFFSET(v_fov),
> AV_OPT_TYPE_FLOAT, {.dbl=45.f}, 0.f, 90.f,
> FLAGS, "v_fov"},
> + { "h_flip", "flip video horizontally", OFFSET(h_flip),
> AV_OPT_TYPE_BOOL, {.i64=0}, 0,
> 1, FLAGS, "h_flip"},
> + { "v_flip", "flip video vertically", OFFSET(v_flip),
> AV_OPT_TYPE_BOOL, {.i64=0}, 0,
> 1, FLAGS, "v_flip"},
> + { "d_flip", "flip video indepth", OFFSET(d_flip),
> AV_OPT_TYPE_BOOL, {.i64=0}, 0,
> 1, FLAGS, "d_flip"},
> + { NULL }
> +};
> +
> +AVFILTER_DEFINE_CLASS(v360);
> +
> +static int query_formats(AVFilterContext *ctx)
> +{
> + static const enum AVPixelFormat pix_fmts[] = {
> + // YUVA444
> + AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
> + AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
> + AV_PIX_FMT_YUVA444P16,
> +
> + // YUVA422
> + AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
> + AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
> + AV_PIX_FMT_YUVA422P16,
> +
> + // YUVA420
> + AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
> + AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
> +
> + // YUVJ
> + AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
> + AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
> + AV_PIX_FMT_YUVJ411P,
> +
> + // YUV444
> + AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P9,
> + AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
> + AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
> +
> + // YUV440
> + AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10,
> + AV_PIX_FMT_YUV440P12,
> +
> + // YUV422
> + AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P9,
> + AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
> + AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
> +
> + // YUV420
> + AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P9,
> + AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
> + AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
> +
> + // YUV411
> + AV_PIX_FMT_YUV411P,
> +
> + // YUV410
> + AV_PIX_FMT_YUV410P,
> +
> + // GBR
> + AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9,
> + AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
> + AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
> +
> + // GBRA
> + AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
> + AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
> +
> + // GRAY
> + AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
> + AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
> + AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
> +
> + AV_PIX_FMT_NONE
> + };
> +
> + AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
> + if (!fmts_list)
> + return AVERROR(ENOMEM);
> + return ff_set_common_formats(ctx, fmts_list);
> +}
> +
> +typedef struct XYRemap1 {
> + uint16_t u;
> + uint16_t v;
> +} XYRemap1;
> +
> +/**
> + * Generate no-interpolation remapping function with a given pixel depth.
> + *
> + * @param bits number of bits per pixel
> + * @param div number of bytes per pixel
> + */
> +#define DEFINE_REMAP1(bits, div)
> \
> +static int remap1_##bits##bit_slice(AVFilterContext *ctx, void *arg, int
> jobnr, int nb_jobs) \
> +{
> \
> + ThreadData *td = (ThreadData*)arg;
> \
> + const V360Context *s = td->s;
> \
> + const AVFrame *in = td->in;
> \
> + AVFrame *out = td->out;
> \
> +
> \
> + int plane, x, y;
> \
> +
> \
> + for (plane = 0; plane < td->nb_planes; plane++)
> { \
> + const int in_linesize = in->linesize[plane] / div;
> \
> + const int out_linesize = out->linesize[plane] / div;
> \
> + const uint##bits##_t *src = (const uint##bits##_t
> *)in->data[plane]; \
> + uint##bits##_t *dst = (uint##bits##_t *)out->data[plane];
> \
> + const XYRemap1 *remap = s->remap[plane];
> \
> + const int width = s->planewidth[plane];
> \
> + const int height = s->planeheight[plane];
> \
> +
> \
> + const int slice_start = (height * jobnr ) / nb_jobs;
> \
> + const int slice_end = (height * (jobnr + 1)) / nb_jobs;
> \
> +
> \
> + for (y = slice_start; y < slice_end; y++)
> { \
> + uint##bits##_t *d = dst + y * out_linesize;
> \
> + for (x = 0; x < width; x++)
> { \
> + const XYRemap1 *r = &remap[y * width + x];
> \
> +
> \
> + *d++ = src[r->v * in_linesize + r->u];
> \
> + }
> \
> + }
> \
> + }
> \
> +
> \
> + return 0;
> \
> +}
> +
> +DEFINE_REMAP1( 8, 1)
> +DEFINE_REMAP1(16, 2)
> +
> +typedef struct XYRemap2 {
> + uint16_t u[2][2];
> + uint16_t v[2][2];
> + float ker[2][2];
> +} XYRemap2;
> +
> +typedef struct XYRemap4 {
> + uint16_t u[4][4];
> + uint16_t v[4][4];
> + float ker[4][4];
> +} XYRemap4;
> +
> +/**
> + * Generate remapping function with a given window size and pixel depth.
> + *
> + * @param window_size size of interpolation window
> + * @param bits number of bits per pixel
> + * @param div number of bytes per pixel
> + */
> +#define DEFINE_REMAP(window_size, bits, div)
> \
> +static int remap##window_size##_##bits##bit_slice(AVFilterContext *ctx,
> void *arg, int jobnr, int nb_jobs) \
> +{
> \
> + ThreadData *td = (ThreadData*)arg;
> \
> + const V360Context *s = td->s;
> \
> + const AVFrame *in = td->in;
> \
> + AVFrame *out = td->out;
> \
> +
> \
> + int plane, x, y, i, j;
> \
> +
> \
> + for (plane = 0; plane < td->nb_planes; plane++)
> { \
> + const int in_linesize = in->linesize[plane] / div;
> \
> + const int out_linesize = out->linesize[plane] / div;
> \
> + const uint##bits##_t *src = (const uint##bits##_t
> *)in->data[plane]; \
> + uint##bits##_t *dst = (uint##bits##_t *)out->data[plane];
> \
> + const XYRemap##window_size *remap = s->remap[plane];
> \
> + const int width = s->planewidth[plane];
> \
> + const int height = s->planeheight[plane];
> \
> +
> \
> + const int slice_start = (height * jobnr ) / nb_jobs;
> \
> + const int slice_end = (height * (jobnr + 1)) / nb_jobs;
> \
> +
> \
> + for (y = slice_start; y < slice_end; y++)
> { \
> + uint##bits##_t *d = dst + y * out_linesize;
> \
> + for (x = 0; x < width; x++)
> {
> \
> + const XYRemap##window_size *r = &remap[y * width +
> x]; \
> + float tmp = 0.f;
> \
> +
> \
> + for (i = 0; i < window_size; i++)
> { \
> + for (j = 0; j < window_size; j++)
> { \
> + tmp += r->ker[i][j] * src[r->v[i][j] * in_linesize
> + r->u[i][j]]; \
> + }
> \
> + }
> \
> +
> \
> + *d++ = av_clip_uint##bits(roundf(tmp));
> \
> + }
> \
> + }
> \
> + }
> \
> +
> \
> + return 0;
> \
> +}
> +
> +DEFINE_REMAP(2, 8, 1)
> +DEFINE_REMAP(4, 8, 1)
> +DEFINE_REMAP(2, 16, 2)
> +DEFINE_REMAP(4, 16, 2)
> +
> +/**
> + * Save nearest pixel coordinates for remapping.
> + *
> + * @param du horizontal relative coordinate
> + * @param dv vertical relative coordinate
> + * @param shift shift for remap array
> + * @param r_tmp calculated 4x4 window
> + * @param r_void remap data
> + */
> +static void nearest_kernel(float du, float dv, int shift, const XYRemap4
> *r_tmp, void *r_void)
> +{
> + XYRemap1 *r = (XYRemap1*)r_void + shift;
> + const int i = roundf(dv) + 1;
> + const int j = roundf(du) + 1;
> +
> + r->u = r_tmp->u[i][j];
> + r->v = r_tmp->v[i][j];
> +}
> +
> +/**
> + * Calculate kernel for bilinear interpolation.
> + *
> + * @param du horizontal relative coordinate
> + * @param dv vertical relative coordinate
> + * @param shift shift for remap array
> + * @param r_tmp calculated 4x4 window
> + * @param r_void remap data
> + */
> +static void bilinear_kernel(float du, float dv, int shift, const XYRemap4
> *r_tmp, void *r_void)
> +{
> + XYRemap2 *r = (XYRemap2*)r_void + shift;
> + int i, j;
> +
> + for (i = 0; i < 2; i++) {
> + for (j = 0; j < 2; j++) {
> + r->u[i][j] = r_tmp->u[i + 1][j + 1];
> + r->v[i][j] = r_tmp->v[i + 1][j + 1];
> + }
> + }
> +
> + r->ker[0][0] = (1.f - du) * (1.f - dv);
> + r->ker[0][1] = du * (1.f - dv);
> + r->ker[1][0] = (1.f - du) * dv;
> + r->ker[1][1] = du * dv;
> +}
> +
> +/**
> + * Calculate 1-dimensional cubic coefficients.
> + *
> + * @param t relative coordinate
> + * @param coeffs coefficients
> + */
> +static inline void calculate_bicubic_coeffs(float t, float *coeffs)
> +{
> + const float tt = t * t;
> + const float ttt = t * t * t;
> +
> + coeffs[0] = - t / 3.f + tt / 2.f - ttt / 6.f;
> + coeffs[1] = 1.f - t / 2.f - tt + ttt / 2.f;
> + coeffs[2] = t + tt / 2.f - ttt / 2.f;
> + coeffs[3] = - t / 6.f + ttt / 6.f;
> +}
> +
> +/**
> + * Calculate kernel for bicubic interpolation.
> + *
> + * @param du horizontal relative coordinate
> + * @param dv vertical relative coordinate
> + * @param shift shift for remap array
> + * @param r_tmp calculated 4x4 window
> + * @param r_void remap data
> + */
> +static void bicubic_kernel(float du, float dv, int shift, const XYRemap4
> *r_tmp, void *r_void)
> +{
> + XYRemap4 *r = (XYRemap4*)r_void + shift;
> + int i, j;
> + float du_coeffs[4];
> + float dv_coeffs[4];
> +
> + calculate_bicubic_coeffs(du, du_coeffs);
> + calculate_bicubic_coeffs(dv, dv_coeffs);
> +
> + for (i = 0; i < 4; i++) {
> + for (j = 0; j < 4; j++) {
> + r->u[i][j] = r_tmp->u[i][j];
> + r->v[i][j] = r_tmp->v[i][j];
> + r->ker[i][j] = du_coeffs[j] * dv_coeffs[i];
> + }
> + }
> +}
> +
> +/**
> + * Calculate 1-dimensional lanczos coefficients.
> + *
> + * @param t relative coordinate
> + * @param coeffs coefficients
> + */
> +static inline void calculate_lanczos_coeffs(float t, float *coeffs)
> +{
> + int i;
> + float sum = 0.f;
> +
> + for (i = 0; i < 4; i++) {
> + const float x = M_PI * (t - i + 1);
> + if (x == 0.f) {
> + coeffs[i] = 1.f;
> + } else {
> + coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f);
> + }
> + sum += coeffs[i];
> + }
> +
> + for (i = 0; i < 4; i++) {
> + coeffs[i] /= sum;
> + }
> +}
> +
> +/**
> + * Calculate kernel for lanczos interpolation.
> + *
> + * @param du horizontal relative coordinate
> + * @param dv vertical relative coordinate
> + * @param shift shift for remap array
> + * @param r_tmp calculated 4x4 window
> + * @param r_void remap data
> + */
> +static void lanczos_kernel(float du, float dv, int shift, const XYRemap4
> *r_tmp, void *r_void)
> +{
> + XYRemap4 *r = (XYRemap4*)r_void + shift;
> + int i, j;
> + float du_coeffs[4];
> + float dv_coeffs[4];
> +
> + calculate_lanczos_coeffs(du, du_coeffs);
> + calculate_lanczos_coeffs(dv, dv_coeffs);
> +
> + for (i = 0; i < 4; i++) {
> + for (j = 0; j < 4; j++) {
> + r->u[i][j] = r_tmp->u[i][j];
> + r->v[i][j] = r_tmp->v[i][j];
> + r->ker[i][j] = du_coeffs[j] * dv_coeffs[i];
> + }
> + }
> +}
> +
> +/**
> + * Modulo operation with only positive remainders.
> + *
> + * @param a dividend
> + * @param b divisor
> + *
> + * @return positive remainder of (a / b)
> + */
> +static inline int mod(int a, int b)
> +{
> + const int res = a % b;
> + if (res < 0) {
> + return res + b;
> + } else {
> + return res;
> + }
> +}
> +
> +/**
> + * Convert char to corresponding direction.
> + * Used for cubemap options.
> + */
> +static int get_direction(char c)
> +{
> + switch (c) {
> + case 'r':
> + return RIGHT;
> + case 'l':
> + return LEFT;
> + case 'u':
> + return UP;
> + case 'd':
> + return DOWN;
> + case 'f':
> + return FRONT;
> + case 'b':
> + return BACK;
> + default:
> + return -1;
> + }
> +}
> +
> +/**
> + * Convert char to corresponding rotation angle.
> + * Used for cubemap options.
> + */
> +static int get_rotation(char c)
> +{
> + switch (c) {
> + case '0':
> + return ROT_0;
> + case '1':
> + return ROT_90;
> + case '2':
> + return ROT_180;
> + case '3':
> + return ROT_270;
> + default:
> + return -1;
> + }
> +}
"case” should be kept alignment as "swicth", remove the blanks.
> +/**
> + * Prepare data for processing cubemap input format.
> + *
> + * @param ctx filter context
> + *
> + * @return error code
> + */
> +static int prepare_cube_in(AVFilterContext *ctx)
> +{
> + V360Context *s = ctx->priv;
> +
> + for (int face = 0; face < NB_FACES; face++) {
> + const char c = s->in_forder[face];
> + int direction;
> +
> + if (c == '\0') {
> + av_log(ctx, AV_LOG_ERROR,
> + "Incomplete in_forder option. Direction for all 6
> faces should be specified.\n");
> + return AVERROR(EINVAL);
> + }
> +
> + direction = get_direction(c);
> + if (direction == -1) {
> + av_log(ctx, AV_LOG_ERROR,
> + "Incorrect direction symbol '%c' in in_forder
> option.\n", c);
> + return AVERROR(EINVAL);
> + }
> +
> + s->in_cubemap_face_order[direction] = face;
> + }
> +
> + for (int face = 0; face < NB_FACES; face++) {
Moving "int face" as the beginning of function can avoid int twice.
> + const char c = s->in_frot[face];
> + int rotation;
> +
> + if (c == '\0') {
> + av_log(ctx, AV_LOG_ERROR,
> + "Incomplete in_frot option. Rotation for all 6 faces
> should be specified.\n");
> + return AVERROR(EINVAL);
> + }
> +
> + rotation = get_rotation(c);
> + if (rotation == -1) {
> + av_log(ctx, AV_LOG_ERROR,
> + "Incorrect rotation symbol '%c' in in_frot option.\n",
> c);
> + return AVERROR(EINVAL);
> + }
> +
> + s->in_cubemap_face_rotation[face] = rotation;
> + }
> +
> + return 0;
> +}
> +
> +/**
> + * Prepare data for processing cubemap output format.
> + *
> + * @param ctx filter context
> + *
> + * @return error code
> + */
> +static int prepare_cube_out(AVFilterContext *ctx)
> +{
> + V360Context *s = ctx->priv;
> +
> + for (int face = 0; face < NB_FACES; face++) {
> + const char c = s->out_forder[face];
> + int direction;
> +
> + if (c == '\0') {
> + av_log(ctx, AV_LOG_ERROR,
> + "Incomplete out_forder option. Direction for all 6
> faces should be specified.\n");
> + return AVERROR(EINVAL);
> + }
> +
> + direction = get_direction(c);
> + if (direction == -1) {
> + av_log(ctx, AV_LOG_ERROR,
> + "Incorrect direction symbol '%c' in out_forder
> option.\n", c);
> + return AVERROR(EINVAL);
> + }
> +
> + s->out_cubemap_direction_order[face] = direction;
> + }
> +
> + for (int face = 0; face < NB_FACES; face++) {
Same.
> + const char c = s->out_frot[face];
> + int rotation;
> +
> + if (c == '\0') {
> + av_log(ctx, AV_LOG_ERROR,
> + "Incomplete out_frot option. Rotation for all 6
> faces should be specified.\n");
> + return AVERROR(EINVAL);
> + }
> +
> + rotation = get_rotation(c);
> + if (rotation == -1) {
> + av_log(ctx, AV_LOG_ERROR,
> + "Incorrect rotation symbol '%c' in out_frot
> option.\n", c);
> + return AVERROR(EINVAL);
> + }
> +
> + s->out_cubemap_face_rotation[face] = rotation;
> + }
> +
> + return 0;
> +}
> +
> +static inline void rotate_cube_face(float *uf, float *vf, int rotation)
> +{
> + float tmp;
> +
> + switch (rotation) {
> + case ROT_0:
> + break;
> + case ROT_90:
> + tmp = *uf;
> + *uf = -*vf;
> + *vf = tmp;
> + break;
> + case ROT_180:
> + *uf = -*uf;
> + *vf = -*vf;
> + break;
> + case ROT_270:
> + tmp = -*uf;
> + *uf = *vf;
> + *vf = tmp;
> + break;
> + }
> +}
> +
> +static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation)
> +{
> + float tmp;
> +
> + switch (rotation) {
> + case ROT_0:
> + break;
> + case ROT_90:
> + tmp = -*uf;
> + *uf = *vf;
> + *vf = tmp;
> + break;
> + case ROT_180:
> + *uf = -*uf;
> + *vf = -*vf;
> + break;
> + case ROT_270:
> + tmp = *uf;
> + *uf = -*vf;
> + *vf = tmp;
> + break;
> + }
> +}
> +
> +/**
> + * Calculate 3D coordinates on sphere for corresponding cubemap position.
> + * Common operation for every cubemap.
> + *
> + * @param s filter context
> + * @param uf horizontal cubemap coordinate [0, 1)
> + * @param vf vertical cubemap coordinate [0, 1)
> + * @param face face of cubemap
> + * @param vec coordinates on sphere
> + */
> +static void cube_to_xyz(const V360Context *s,
> + float uf, float vf, int face,
> + float *vec)
> +{
> + const int direction = s->out_cubemap_direction_order[face];
> + float norm;
> + float l_x, l_y, l_z;
> +
> + rotate_cube_face_inverse(&uf, &vf,
> s->out_cubemap_face_rotation[face]);
> +
> + switch (direction) {
> + case RIGHT:
> + l_x = 1.f;
> + l_y = -vf;
> + l_z = uf;
> + break;
> + case LEFT:
> + l_x = -1.f;
> + l_y = -vf;
> + l_z = -uf;
> + break;
> + case UP:
> + l_x = uf;
> + l_y = 1.f;
> + l_z = -vf;
> + break;
> + case DOWN:
> + l_x = uf;
> + l_y = -1.f;
> + l_z = vf;
> + break;
> + case FRONT:
> + l_x = uf;
> + l_y = -vf;
> + l_z = -1.f;
> + break;
> + case BACK:
> + l_x = -uf;
> + l_y = -vf;
> + l_z = 1.f;
> + break;
> + }
> +
> + norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z);
> + vec[0] = l_x / norm;
> + vec[1] = l_y / norm;
> + vec[2] = l_z / norm;
> +}
> +
> +/**
> + * Calculate cubemap position for corresponding 3D coordinates on sphere.
> + * Common operation for every cubemap.
> + *
> + * @param s filter context
> + * @param vec coordinated on sphere
> + * @param uf horizontal cubemap coordinate [0, 1)
> + * @param vf vertical cubemap coordinate [0, 1)
> + * @param direction direction of view
> + */
> +static void xyz_to_cube(const V360Context *s,
> + const float *vec,
> + float *uf, float *vf, int *direction)
> +{
> + const float phi = atan2f(vec[0], -vec[2]);
> + const float theta = asinf(-vec[1]);
> + float phi_norm, theta_threshold;
> + int face;
> +
> + if (phi >= -M_PI_4 && phi < M_PI_4) {
> + *direction = FRONT;
> + phi_norm = phi;
> + } else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) {
> + *direction = LEFT;
> + phi_norm = phi + M_PI_2;
> + } else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) {
> + *direction = RIGHT;
> + phi_norm = phi - M_PI_2;
> + } else {
> + *direction = BACK;
> + phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI);
> + }
> +
> + theta_threshold = atanf(cosf(phi_norm));
> + if (theta > theta_threshold) {
> + *direction = DOWN;
> + } else if (theta < -theta_threshold) {
> + *direction = UP;
> + }
> +
> + switch (*direction) {
> + case RIGHT:
> + *uf = vec[2] / vec[0];
> + *vf = -vec[1] / vec[0];
> + break;
> + case LEFT:
> + *uf = vec[2] / vec[0];
> + *vf = vec[1] / vec[0];
> + break;
> + case UP:
> + *uf = vec[0] / vec[1];
> + *vf = -vec[2] / vec[1];
> + break;
> + case DOWN:
> + *uf = -vec[0] / vec[1];
> + *vf = -vec[2] / vec[1];
> + break;
> + case FRONT:
> + *uf = -vec[0] / vec[2];
> + *vf = vec[1] / vec[2];
> + break;
> + case BACK:
> + *uf = -vec[0] / vec[2];
> + *vf = -vec[1] / vec[2];
> + break;
> + }
> +
> + face = s->in_cubemap_face_order[*direction];
> + rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]);
> +}
> +
> +/**
> + * Find position on another cube face in case of overflow/underflow.
> + * Used for calculation of interpolation window.
> + *
> + * @param s filter context
> + * @param uf horizontal cubemap coordinate
> + * @param vf vertical cubemap coordinate
> + * @param direction direction of view
> + * @param new_uf new horizontal cubemap coordinate
> + * @param new_vf new vertical cubemap coordinate
> + * @param face face position on cubemap
> + */
> +static void process_cube_coordinates(const V360Context *s,
> + float uf, float vf, int direction,
> + float *new_uf, float *new_vf, int
> *face)
> +{
> + /*
> + * Cubemap orientation
> + *
> + * width
> + * <------->
> + * +-------+
> + * | | U
> + * | up | h ------->
> + * +-------+-------+-------+-------+ ^ e |
> + * | | | | | | i V |
> + * | left | front | right | back | | g |
> + * +-------+-------+-------+-------+ v h v
> + * | | t
> + * | down |
> + * +-------+
> + */
> +
> + *face = s->in_cubemap_face_order[direction];
> + rotate_cube_face_inverse(&uf, &vf,
> s->in_cubemap_face_rotation[*face]);
> +
> + if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) {
> + // There are no pixels to use in this case
> + *new_uf = uf;
> + *new_vf = vf;
> + } else if (uf < -1.f) {
> + uf += 2.f;
> + switch (direction) {
> + case RIGHT:
> + direction = FRONT;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + case LEFT:
> + direction = BACK;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + case UP:
> + direction = LEFT;
> + *new_uf = vf;
> + *new_vf = -uf;
> + break;
> + case DOWN:
> + direction = LEFT;
> + *new_uf = -vf;
> + *new_vf = uf;
> + break;
> + case FRONT:
> + direction = LEFT;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + case BACK:
> + direction = RIGHT;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + }
> + } else if (uf >= 1.f) {
> + uf -= 2.f;
> + switch (direction) {
> + case RIGHT:
> + direction = BACK;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + case LEFT:
> + direction = FRONT;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + case UP:
> + direction = RIGHT;
> + *new_uf = -vf;
> + *new_vf = uf;
> + break;
> + case DOWN:
> + direction = RIGHT;
> + *new_uf = vf;
> + *new_vf = -uf;
> + break;
> + case FRONT:
> + direction = RIGHT;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + case BACK:
> + direction = LEFT;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + }
> + } else if (vf < -1.f) {
> + vf += 2.f;
> + switch (direction) {
> + case RIGHT:
> + direction = UP;
> + *new_uf = vf;
> + *new_vf = -uf;
> + break;
> + case LEFT:
> + direction = UP;
> + *new_uf = -vf;
> + *new_vf = uf;
> + break;
> + case UP:
> + direction = BACK;
> + *new_uf = -uf;
> + *new_vf = -vf;
> + break;
> + case DOWN:
> + direction = FRONT;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + case FRONT:
> + direction = UP;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + case BACK:
> + direction = UP;
> + *new_uf = -uf;
> + *new_vf = -vf;
> + break;
> + }
> + } else if (vf >= 1.f) {
> + vf -= 2.f;
> + switch (direction) {
> + case RIGHT:
> + direction = DOWN;
> + *new_uf = -vf;
> + *new_vf = uf;
> + break;
> + case LEFT:
> + direction = DOWN;
> + *new_uf = vf;
> + *new_vf = -uf;
> + break;
> + case UP:
> + direction = FRONT;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + case DOWN:
> + direction = BACK;
> + *new_uf = -uf;
> + *new_vf = -vf;
> + break;
> + case FRONT:
> + direction = DOWN;
> + *new_uf = uf;
> + *new_vf = vf;
> + break;
> + case BACK:
> + direction = DOWN;
> + *new_uf = -uf;
> + *new_vf = -vf;
> + break;
> + }
> + } else {
> + // Inside cube face
> + *new_uf = uf;
> + *new_vf = vf;
> + }
> +
> + *face = s->in_cubemap_face_order[direction];
> + rotate_cube_face(new_uf, new_vf,
> s->in_cubemap_face_rotation[*face]);
> +}
> +
> +/**
> + * Calculate 3D coordinates on sphere for corresponding frame position in
> cubemap3x2 format.
> + *
> + * @param s filter context
> + * @param i horizontal position on frame [0, height)
> + * @param j vertical position on frame [0, width)
> + * @param width frame width
> + * @param height frame height
> + * @param vec coordinates on sphere
> + */
> +static void cube3x2_to_xyz(const V360Context *s,
> + int i, int j, int width, int height,
> + float *vec)
> +{
> + const float ew = width / 3.f;
> + const float eh = height / 2.f;
> +
> + const int u_face = floorf(i / ew);
> + const int v_face = floorf(j / eh);
> + const int face = u_face + 3 * v_face;
> +
> + const int u_shift = ceilf(ew * u_face);
> + const int v_shift = ceilf(eh * v_face);
> + const int ewi = ceilf(ew * (u_face + 1)) - u_shift;
> + const int ehi = ceilf(eh * (v_face + 1)) - v_shift;
> +
> + const float uf = 2.f * (i - u_shift) / ewi - 1.f;
> + const float vf = 2.f * (j - v_shift) / ehi - 1.f;
> +
> + cube_to_xyz(s, uf, vf, face, vec);
> +}
> +
> +/**
> + * Calculate frame position in cubemap3x2 format for corresponding 3D
> coordinates on sphere.
> + *
> + * @param s filter context
> + * @param vec coordinates on sphere
> + * @param width frame width
> + * @param height frame height
> + * @param us horizontal coordinates for interpolation window
> + * @param vs vertical coordinates for interpolation window
> + * @param du horizontal relative coordinate
> + * @param dv vertical relative coordinate
> + */
> +static void xyz_to_cube3x2(const V360Context *s,
> + const float *vec, int width, int height,
> + uint16_t us[4][4], uint16_t vs[4][4], float
> *du, float *dv)
> +{
> + const float ew = width / 3.f;
> + const float eh = height / 2.f;
> + float uf, vf;
> + int ui, vi;
> + int ewi, ehi;
> + int i, j;
> + int direction, face;
> + int u_face, v_face;
> +
> + xyz_to_cube(s, vec, &uf, &vf, &direction);
> +
> + face = s->in_cubemap_face_order[direction];
> + u_face = face % 3;
> + v_face = face / 3;
> + ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face);
> + ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face);
> +
> + uf = 0.5f * ewi * (uf + 1.f);
> + vf = 0.5f * ehi * (vf + 1.f);
> +
> + ui = floorf(uf);
> + vi = floorf(vf);
> +
> + *du = uf - ui;
> + *dv = vf - vi;
> +
> + for (i = -1; i < 3; i++) {
> + for (j = -1; j < 3; j++) {
> + float u, v;
> + int u_shift, v_shift;
> + int new_ewi, new_ehi;
> +
> + process_cube_coordinates(s, 2.f * (ui + j) / ewi - 1.f,
> + 2.f * (vi + i) / ehi - 1.f,
> + direction, &u, &v, &face);
> + u_face = face % 3;
> + v_face = face / 3;
> + u_shift = ceilf(ew * u_face);
> + v_shift = ceilf(eh * v_face);
> + new_ewi = ceilf(ew * (u_face + 1)) - u_shift;
> + new_ehi = ceilf(eh * (v_face + 1)) - v_shift;
> +
> + us[i + 1][j + 1] = u_shift + av_clip(roundf(0.5f * new_ewi * (u
> + 1.f)), 0, new_ewi - 1);
> + vs[i + 1][j + 1] = v_shift + av_clip(roundf(0.5f * new_ehi * (v +
> 1.f)), 0, new_ehi - 1);
> + }
> + }
> +}
> +
> +/**
> + * Calculate 3D coordinates on sphere for corresponding frame position in
> cubemap6x1 format.
> + *
> + * @param s filter context
> + * @param i horizontal position on frame [0, height)
> + * @param j vertical position on frame [0, width)
> + * @param width frame width
> + * @param height frame height
> + * @param vec coordinates on sphere
> + */
> +static void cube6x1_to_xyz(const V360Context *s,
> + int i, int j, int width, int height,
> + float *vec)
> +{
> + const float ew = width / 6.f;
> + const float eh = height;
> +
> + const int face = floorf(i / ew);
> +
> + const int u_shift = ceilf(ew * face);
> + const int ewi = ceilf(ew * (face + 1)) - u_shift;
> +
> + const float uf = 2.f * (i - u_shift) / ewi - 1.f;
> + const float vf = 2.f * j / eh - 1.f;
> +
> + cube_to_xyz(s, uf, vf, face, vec);
> +}
> +
> +/**
> + * Calculate frame position in cubemap6x1 format for corresponding 3D
> coordinates on sphere.
> + *
> + * @param s filter context
> + * @param vec coordinates on sphere
> + * @param width frame width
> + * @param height frame height
> + * @param us horizontal coordinates for interpolation window
> + * @param vs vertical coordinates for interpolation window
> + * @param du horizontal relative coordinate
> + * @param dv vertical relative coordinate
> + */
> +static void xyz_to_cube6x1(const V360Context *s,
> + const float *vec, int width, int height,
> + uint16_t us[4][4], uint16_t vs[4][4], float
> *du, float *dv)
> +{
> + const float ew = width / 6.f;
> + const float eh = height;
> + float uf, vf;
> + int ui, vi;
> + int ewi;
> + int i, j;
> + int direction, face;
> +
> + xyz_to_cube(s, vec, &uf, &vf, &direction);
> +
> + face = s->in_cubemap_face_order[direction];
> + ewi = ceilf(ew * (face + 1)) - ceilf(ew * face);
> +
> + uf = 0.5f * ewi * (uf + 1.f);
> + vf = 0.5f * eh * (vf + 1.f);
> +
> + ui = floorf(uf);
> + vi = floorf(vf);
> +
> + *du = uf - ui;
> + *dv = vf - vi;
> +
> + for (i = -1; i < 3; i++) {
> + for (j = -1; j < 3; j++) {
> + float u, v;
> + int u_shift;
> + int new_ewi;
> +
> + process_cube_coordinates(s, 2.f * (ui + j) / ewi - 1.f,
> + 2.f * (vi + i) / eh - 1.f,
> + direction, &u, &v, &face);
> + u_shift = ceilf(ew * face);
> + new_ewi = ceilf(ew * (face + 1)) - u_shift;
> +
> + us[i + 1][j + 1] = u_shift + av_clip(roundf(0.5f * new_ewi * (u
> + 1.f)), 0, new_ewi - 1);
> + vs[i + 1][j + 1] = av_clip(roundf(0.5f * eh
> * (v + 1.f)), 0, eh - 1);
> + }
> + }
> +}
> +
> +/**
> + * Calculate 3D coordinates on sphere for corresponding frame position in
> equirectangular format.
> + *
> + * @param s filter context
> + * @param i horizontal position on frame [0, height)
> + * @param j vertical position on frame [0, width)
> + * @param width frame width
> + * @param height frame height
> + * @param vec coordinates on sphere
> + */
> +static void equirect_to_xyz(const V360Context *s,
> + int i, int j, int width, int height,
> + float *vec)
> +{
> + const float phi = ((2.f * i) / width - 1.f) * M_PI;
> + const float theta = ((2.f * j) / height - 1.f) * M_PI_2;
> +
> + const float sin_phi = sinf(phi);
> + const float cos_phi = cosf(phi);
> + const float sin_theta = sinf(theta);
> + const float cos_theta = cosf(theta);
> +
> + vec[0] = cos_theta * sin_phi;
> + vec[1] = -sin_theta;
> + vec[2] = -cos_theta * cos_phi;
> +}
> +
> +/**
> + * Calculate frame position in equirectangular format for corresponding 3D
> coordinates on sphere.
> + *
> + * @param s filter context
> + * @param vec coordinates on sphere
> + * @param width frame width
> + * @param height frame height
> + * @param us horizontal coordinates for interpolation window
> + * @param vs vertical coordinates for interpolation window
> + * @param du horizontal relative coordinate
> + * @param dv vertical relative coordinate
> + */
> +static void xyz_to_equirect(const V360Context *s,
> + const float *vec, int width, int height,
> + uint16_t us[4][4], uint16_t vs[4][4], float
> *du, float *dv)
> +{
> + const float phi = atan2f(vec[0], -vec[2]);
> + const float theta = asinf(-vec[1]);
> + float uf, vf;
> + int ui, vi;
> + int i, j;
> +
> + uf = (phi / M_PI + 1.f) * width / 2.f;
> + vf = (theta / M_PI_2 + 1.f) * height / 2.f;
> + ui = floorf(uf);
> + vi = floorf(vf);
> +
> + *du = uf - ui;
> + *dv = vf - vi;
> +
> + for (i = -1; i < 3; i++) {
> + for (j = -1; j < 3; j++) {
> + us[i + 1][j + 1] = mod(ui + j, width);
> + vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
> + }
> + }
> +}
> +
> +/**
> + * Prepare data for processing equi-angular cubemap input format.
> + *
> + * @param ctx filter context
> +
> + * @return error code
> + */
> +static int prepare_eac_in(AVFilterContext *ctx)
> +{
> + V360Context *s = ctx->priv;
> +
> + s->in_cubemap_face_order[RIGHT] = TOP_RIGHT;
> + s->in_cubemap_face_order[LEFT] = TOP_LEFT;
> + s->in_cubemap_face_order[UP] = BOTTOM_RIGHT;
> + s->in_cubemap_face_order[DOWN] = BOTTOM_LEFT;
> + s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
> + s->in_cubemap_face_order[BACK] = BOTTOM_MIDDLE;
> +
> + s->in_cubemap_face_rotation[TOP_LEFT] = ROT_0;
> + s->in_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
> + s->in_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
> + s->in_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
> + s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
> + s->in_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
> +
> + return 0;
> +}
> +
> +/**
> + * Prepare data for processing equi-angular cubemap output format.
> + *
> + * @param ctx filter context
> + *
> + * @return error code
> + */
> +static int prepare_eac_out(AVFilterContext *ctx)
> +{
> + V360Context *s = ctx->priv;
> +
> + s->out_cubemap_direction_order[TOP_LEFT] = LEFT;
> + s->out_cubemap_direction_order[TOP_MIDDLE] = FRONT;
> + s->out_cubemap_direction_order[TOP_RIGHT] = RIGHT;
> + s->out_cubemap_direction_order[BOTTOM_LEFT] = DOWN;
> + s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK;
> + s->out_cubemap_direction_order[BOTTOM_RIGHT] = UP;
> +
> + s->out_cubemap_face_rotation[TOP_LEFT] = ROT_0;
> + s->out_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
> + s->out_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
> + s->out_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
> + s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
> + s->out_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
> +
> + return 0;
> +}
> +
> +/**
> + * Calculate 3D coordinates on sphere for corresponding frame position in
> equi-angular cubemap format.
> + *
> + * @param s filter context
> + * @param i horizontal position on frame [0, height)
> + * @param j vertical position on frame [0, width)
> + * @param width frame width
> + * @param height frame height
> + * @param vec coordinates on sphere
> + */
> +static void eac_to_xyz(const V360Context *s,
> + int i, int j, int width, int height,
> + float *vec)
> +{
> + const float pixel_pad = 2;
> + const float u_pad = pixel_pad / width;
> + const float v_pad = pixel_pad / height;
> +
> + int u_face, v_face, face;
> +
> + float l_x, l_y, l_z;
> + float norm;
> +
> + float uf = (float)i / width;
> + float vf = (float)j / height;
> +
> + // EAC has 2-pixel padding on faces except between faces on the same
> row
> + // Padding pixels seems not to be stretched with tangent as regular
> pixels
> + // Formulas below approximate original padding as close as I could get
> experimentally
> +
> + // Horizontal padding
> + uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad);
> + if (uf < 0.f) {
> + u_face = 0;
> + uf -= 0.5f;
> + } else if (uf >= 3.f) {
> + u_face = 2;
> + uf -= 2.5f;
> + } else {
> + u_face = floorf(uf);
> + uf = fmodf(uf, 1.f) - 0.5f;
> + }
> +
> + // Vertical padding
> + v_face = floorf(vf * 2.f);
> + vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f;
> +
> + if (uf >= -0.5f && uf < 0.5f) {
> + uf = tanf(M_PI_2 * uf);
> + } else {
> + uf = 2.f * uf;
> + }
> + if (vf >= -0.5f && vf < 0.5f) {
> + vf = tanf(M_PI_2 * vf);
> + } else {
> + vf = 2.f * vf;
> + }
> +
> + face = u_face + 3 * v_face;
> +
> + switch (face) {
> + case TOP_LEFT:
> + l_x = -1.f;
> + l_y = -vf;
> + l_z = -uf;
> + break;
> + case TOP_MIDDLE:
> + l_x = uf;
> + l_y = -vf;
> + l_z = -1.f;
> + break;
> + case TOP_RIGHT:
> + l_x = 1.f;
> + l_y = -vf;
> + l_z = uf;
> + break;
> + case BOTTOM_LEFT:
> + l_x = -vf;
> + l_y = -1.f;
> + l_z = uf;
> + break;
> + case BOTTOM_MIDDLE:
> + l_x = -vf;
> + l_y = uf;
> + l_z = 1.f;
> + break;
> + case BOTTOM_RIGHT:
> + l_x = -vf;
> + l_y = 1.f;
> + l_z = -uf;
> + break;
> + }
> +
> + norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z);
> + vec[0] = l_x / norm;
> + vec[1] = l_y / norm;
> + vec[2] = l_z / norm;
> +}
> +
> +/**
> + * Calculate frame position in equi-angular cubemap format for
> corresponding 3D coordinates on sphere.
> + *
> + * @param s filter context
> + * @param vec coordinates on sphere
> + * @param width frame width
> + * @param height frame height
> + * @param us horizontal coordinates for interpolation window
> + * @param vs vertical coordinates for interpolation window
> + * @param du horizontal relative coordinate
> + * @param dv vertical relative coordinate
> + */
> +static void xyz_to_eac(const V360Context *s,
> + const float *vec, int width, int height,
> + uint16_t us[4][4], uint16_t vs[4][4], float *du,
> float *dv)
> +{
> + const float pixel_pad = 2;
> + const float u_pad = pixel_pad / width;
> + const float v_pad = pixel_pad / height;
> +
> + float uf, vf;
> + int ui, vi;
> + int i, j;
> + int direction, face;
> + int u_face, v_face;
> +
> + xyz_to_cube(s, vec, &uf, &vf, &direction);
> +
> + face = s->in_cubemap_face_order[direction];
> + u_face = face % 3;
> + v_face = face / 3;
> +
> + uf = M_2_PI * atanf(uf) + 0.5f;
> + vf = M_2_PI * atanf(vf) + 0.5f;
> +
> + // These formulas are inversed from eac_to_xyz ones
> + uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad;
> + vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face;
> +
> + uf *= width;
> + vf *= height;
> +
> + ui = floorf(uf);
> + vi = floorf(vf);
> +
> + *du = uf - ui;
> + *dv = vf - vi;
> +
> + for (i = -1; i < 3; i++) {
> + for (j = -1; j < 3; j++) {
> + us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1);
> + vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
> + }
> + }
> +}
> +
> +/**
> + * Prepare data for processing flat output format.
> + *
> + * @param ctx filter context
> + *
> + * @return error code
> + */
> +static int prepare_flat_out(AVFilterContext *ctx)
> +{
> + V360Context *s = ctx->priv;
> +
> + const float h_angle = 0.5f * s->h_fov * M_PI / 180.f;
> + const float v_angle = 0.5f * s->v_fov * M_PI / 180.f;
> +
> + const float sin_phi = sinf(h_angle);
> + const float cos_phi = cosf(h_angle);
> + const float sin_theta = sinf(v_angle);
> + const float cos_theta = cosf(v_angle);
> +
> + s->flat_range[0] = cos_theta * sin_phi;
> + s->flat_range[1] = sin_theta;
> + s->flat_range[2] = -cos_theta * cos_phi;
> +
> + return 0;
> +}
> +
> +/**
> + * Calculate 3D coordinates on sphere for corresponding frame position in
> flat format.
> + *
> + * @param s filter context
> + * @param i horizontal position on frame [0, height)
> + * @param j vertical position on frame [0, width)
> + * @param width frame width
> + * @param height frame height
> + * @param vec coordinates on sphere
> + */
> +static void flat_to_xyz(const V360Context *s,
> + int i, int j, int width, int height,
> + float *vec)
> +{
> + const float l_x = s->flat_range[0] * (2.f * i / width - 1.f);
> + const float l_y = -s->flat_range[1] * (2.f * j / height - 1.f);
> + const float l_z = s->flat_range[2];
> +
> + const float norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z);
> +
> + vec[0] = l_x / norm;
> + vec[1] = l_y / norm;
> + vec[2] = l_z / norm;
> +}
> +
> +/**
> + * Calculate rotation matrix for yaw/pitch/roll angles.
> + */
> +static inline void calculate_rotation_matrix(float yaw, float pitch, float roll,
> + float rot_mat[3][3])
> +{
> + const float yaw_rad = yaw * M_PI / 180.f;
> + const float pitch_rad = pitch * M_PI / 180.f;
> + const float roll_rad = roll * M_PI / 180.f;
> +
> + const float sin_yaw = sinf(-yaw_rad);
> + const float cos_yaw = cosf(-yaw_rad);
> + const float sin_pitch = sinf(pitch_rad);
> + const float cos_pitch = cosf(pitch_rad);
> + const float sin_roll = sinf(roll_rad);
> + const float cos_roll = cosf(roll_rad);
> +
> + rot_mat[0][0] = sin_yaw * sin_pitch * sin_roll + cos_yaw * cos_roll;
> + rot_mat[0][1] = sin_yaw * sin_pitch * cos_roll - cos_yaw * sin_roll;
> + rot_mat[0][2] = sin_yaw * cos_pitch;
> +
> + rot_mat[1][0] = cos_pitch * sin_roll;
> + rot_mat[1][1] = cos_pitch * cos_roll;
> + rot_mat[1][2] = -sin_pitch;
> +
> + rot_mat[2][0] = cos_yaw * sin_pitch * sin_roll - sin_yaw * cos_roll;
> + rot_mat[2][1] = cos_yaw * sin_pitch * cos_roll + sin_yaw * sin_roll;
> + rot_mat[2][2] = cos_yaw * cos_pitch;
> +}
> +
> +/**
> + * Rotate vector with given rotation matrix.
> + *
> + * @param rot_mat rotation matrix
> + * @param vec vector
> + */
> +static inline void rotate(const float rot_mat[3][3],
> + float *vec)
> +{
> + const float x_tmp = vec[0] * rot_mat[0][0] + vec[1] * rot_mat[0][1] +
> vec[2] * rot_mat[0][2];
> + const float y_tmp = vec[0] * rot_mat[1][0] + vec[1] * rot_mat[1][1] +
> vec[2] * rot_mat[1][2];
> + const float z_tmp = vec[0] * rot_mat[2][0] + vec[1] * rot_mat[2][1] +
> vec[2] * rot_mat[2][2];
> +
> + vec[0] = x_tmp;
> + vec[1] = y_tmp;
> + vec[2] = z_tmp;
> +}
> +
> +static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip,
> + float *modifier)
> +{
> + modifier[0] = h_flip ? -1.f : 1.f;
> + modifier[1] = v_flip ? -1.f : 1.f;
> + modifier[2] = d_flip ? -1.f : 1.f;
> +}
> +
> +static inline void mirror(const float *modifier,
> + float *vec)
> +{
> + vec[0] *= modifier[0];
> + vec[1] *= modifier[1];
> + vec[2] *= modifier[2];
> +}
> +
> +static int config_output(AVFilterLink *outlink)
> +{
> + AVFilterContext *ctx = outlink->src;
> + AVFilterLink *inlink = ctx->inputs[0];
> + V360Context *s = ctx->priv;
> + const AVPixFmtDescriptor *desc =
> av_pix_fmt_desc_get(inlink->format);
> + const int depth = desc->comp[0].depth;
> + float remap_data_size = 0.f;
> + int sizeof_remap;
> + int err;
> + int p, h, w;
> + float hf, wf;
> + float mirror_modifier[3];
> + void (*in_transform)(const V360Context *s,
> + const float *vec, int width, int height,
> + uint16_t us[4][4], uint16_t vs[4][4], float
> *du, float *dv);
> + void (*out_transform)(const V360Context *s,
> + int i, int j, int width, int height,
> + float *vec);
> + void (*calculate_kernel)(float du, float dv, int shift, const XYRemap4
> *r_tmp, void *r);
> + float rot_mat[3][3];
> +
> + switch (s->interp) {
> + case NEAREST:
> + calculate_kernel = nearest_kernel;
> + s->remap_slice = depth <= 8 ? remap1_8bit_slice :
> remap1_16bit_slice;
> + sizeof_remap = sizeof(XYRemap1);
> + break;
> + case BILINEAR:
> + calculate_kernel = bilinear_kernel;
> + s->remap_slice = depth <= 8 ? remap2_8bit_slice :
> remap2_16bit_slice;
> + sizeof_remap = sizeof(XYRemap2);
> + break;
> + case BICUBIC:
> + calculate_kernel = bicubic_kernel;
> + s->remap_slice = depth <= 8 ? remap4_8bit_slice :
> remap4_16bit_slice;
> + sizeof_remap = sizeof(XYRemap4);
> + break;
> + case LANCZOS:
> + calculate_kernel = lanczos_kernel;
> + s->remap_slice = depth <= 8 ? remap4_8bit_slice :
> remap4_16bit_slice;
> + sizeof_remap = sizeof(XYRemap4);
> + break;
> + }
> +
> + switch (s->in) {
> + case EQUIRECTANGULAR:
> + in_transform = xyz_to_equirect;
> + err = 0;
> + wf = inlink->w;
> + hf = inlink->h;
> + break;
> + case CUBEMAP_3_2:
> + in_transform = xyz_to_cube3x2;
> + err = prepare_cube_in(ctx);
> + wf = inlink->w / 3.f * 4.f;
> + hf = inlink->h;
> + break;
> + case CUBEMAP_6_1:
> + in_transform = xyz_to_cube6x1;
> + err = prepare_cube_in(ctx);
> + wf = inlink->w / 3.f * 2.f;
> + hf = inlink->h * 2.f;
> + break;
> + case EQUIANGULAR:
> + in_transform = xyz_to_eac;
> + err = prepare_eac_in(ctx);
> + wf = inlink->w;
> + hf = inlink->h / 9.f * 8.f;
> + break;
> + case FLAT:
> + av_log(ctx, AV_LOG_ERROR, "Flat format is not accepted as
> input.\n");
> + return AVERROR(EINVAL);
> + }
> +
> + if (err != 0) {
> + return err;
> + }
> +
> + switch (s->out) {
> + case EQUIRECTANGULAR:
> + out_transform = equirect_to_xyz;
> + err = 0;
> + w = roundf(wf);
> + h = roundf(hf);
> + break;
> + case CUBEMAP_3_2:
> + out_transform = cube3x2_to_xyz;
> + err = prepare_cube_out(ctx);
> + w = roundf(wf / 4.f * 3.f);
> + h = roundf(hf);
> + break;
> + case CUBEMAP_6_1:
> + out_transform = cube6x1_to_xyz;
> + err = prepare_cube_out(ctx);
> + w = roundf(wf / 2.f * 3.f);
> + h = roundf(hf / 2.f);
> + break;
> + case EQUIANGULAR:
> + out_transform = eac_to_xyz;
> + err = prepare_eac_out(ctx);
> + w = roundf(wf);
> + h = roundf(hf / 8.f * 9.f);
> + break;
> + case FLAT:
> + out_transform = flat_to_xyz;
> + err = prepare_flat_out(ctx);
> + w = roundf(wf * s->flat_range[0] / s->flat_range[1] / 2.f);
> + h = roundf(hf);
> + break;
> + }
> +
> + if (err != 0) {
> + return err;
> + }
> +
> + if (s->width > 0 && s->height > 0) {
> + w = s->width;
> + h = s->height;
> + }
If s->width/height are checked, should handle the case of no ture,
Else w/h may be used but not initialized.
> + s->planeheight[1] = s->planeheight[2] = FF_CEIL_RSHIFT(h,
> desc->log2_chroma_h);
> + s->planeheight[0] = s->planeheight[3] = h;
> + s->planewidth[1] = s->planewidth[2] = FF_CEIL_RSHIFT(w,
> desc->log2_chroma_w);
> + s->planewidth[0] = s->planewidth[3] = w;
> +
> + outlink->h = h;
> + outlink->w = w;
> +
> + s->inplaneheight[1] = s->inplaneheight[2] = FF_CEIL_RSHIFT(inlink->h,
> desc->log2_chroma_h);
> + s->inplaneheight[0] = s->inplaneheight[3] = inlink->h;
> + s->inplanewidth[1] = s->inplanewidth[2] =
> FF_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
> + s->inplanewidth[0] = s->inplanewidth[3] = inlink->w;
> + s->nb_planes = av_pix_fmt_count_planes(inlink->format);
> +
> + for (p = 0; p < s->nb_planes; p++) {
> + remap_data_size += (float)s->planewidth[p] * s->planeheight[p] *
> sizeof_remap;
> + }
> +
> + for (p = 0; p < s->nb_planes; p++) {
> + s->remap[p] = av_calloc(s->planewidth[p] * s->planeheight[p],
> sizeof_remap);
> + if (!s->remap[p]) {
> + av_log(ctx, AV_LOG_ERROR,
> + "Not enough memory to allocate remap data. Need
> at least %.3f GiB.\n",
> + remap_data_size / (1024 * 1024 * 1024));
> + return AVERROR(ENOMEM);
> + }
> + }
> +
> + calculate_rotation_matrix(s->yaw, s->pitch, s->roll, rot_mat);
> + set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, mirror_modifier);
> +
> + // Calculate remap data
> + for (p = 0; p < s->nb_planes; p++) {
> + const int width = s->planewidth[p];
> + const int height = s->planeheight[p];
> + const int in_width = s->inplanewidth[p];
> + const int in_height = s->inplaneheight[p];
> + void *r = s->remap[p];
> + float du, dv;
> + float vec[3];
> + XYRemap4 r_tmp;
> + int i, j;
> +
> + for (i = 0; i < width; i++) {
> + for (j = 0; j < height; j++) {
> + out_transform(s, i, j, width, height, vec);
> + rotate(rot_mat, vec);
> + mirror(mirror_modifier, vec);
> + in_transform(s, vec, in_width, in_height, r_tmp.u,
> r_tmp.v, &du, &dv);
> + calculate_kernel(du, dv, j * width + i, &r_tmp, r);
> + }
> + }
> + }
> +
> + return 0;
> +}
> +
> +static int filter_frame(AVFilterLink *inlink, AVFrame *in)
> +{
> + AVFilterContext *ctx = inlink->dst;
> + AVFilterLink *outlink = ctx->outputs[0];
> + V360Context *s = ctx->priv;
> + AVFrame *out;
> + ThreadData td;
> +
> + out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
> + if (!out) {
> + av_frame_free(&in);
> + return AVERROR(ENOMEM);
> + }
> + av_frame_copy_props(out, in);
> +
> + td.s = s;
> + td.in = in;
> + td.out = out;
> + td.nb_planes = s->nb_planes;
> +
> + ctx->internal->execute(ctx, s->remap_slice, &td, NULL,
> FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
> +
> + av_frame_free(&in);
> + return ff_filter_frame(outlink, out);
> +}
> +
> +static av_cold void uninit(AVFilterContext *ctx)
> +{
> + V360Context *s = ctx->priv;
> + int p;
> +
> + for (p = 0; p < s->nb_planes; p++)
> + av_freep(&s->remap[p]);
> +}
> +
> +static const AVFilterPad inputs[] = {
> + {
> + .name = "default",
> + .type = AVMEDIA_TYPE_VIDEO,
> + .filter_frame = filter_frame,
> + },
> + { NULL }
> +};
> +
> +static const AVFilterPad outputs[] = {
> + {
> + .name = "default",
> + .type = AVMEDIA_TYPE_VIDEO,
> + .config_props = config_output,
> + },
> + { NULL }
> +};
> +
> +AVFilter ff_vf_v360 = {
> + .name = "v360",
> + .description = NULL_IF_CONFIG_SMALL("Convert 360 projection of
> video."),
> + .priv_size = sizeof(V360Context),
> + .uninit = uninit,
> + .query_formats = query_formats,
> + .inputs = inputs,
> + .outputs = outputs,
> + .priv_class = &v360_class,
> + .flags = AVFILTER_FLAG_SLICE_THREADS,
> +};
> --
> 2.22.0
More information about the ffmpeg-devel
mailing list