[FFmpeg-cvslog] lavfi/dnn: Remove DNN native backend
Ting Fu
git at videolan.org
Fri Apr 28 07:12:53 EEST 2023
ffmpeg | branch: master | Ting Fu <ting.fu-at-intel.com at ffmpeg.org> | Thu Apr 27 17:43:46 2023 +0800| [78f95f10887f7273a861268e9e6b93411f59ed20] | committer: Guo Yejun
lavfi/dnn: Remove DNN native backend
According to discussion in
https://etherpad.mit.edu/p/FF_dev_meeting_20221202 and the proposal in
http://ffmpeg.org/pipermail/ffmpeg-devel/2022-December/304534.html,
the DNN native backend should be removed at first step.
All the DNN native backend related codes are deleted.
Signed-off-by: Ting Fu <ting.fu at intel.com>
> http://git.videolan.org/gitweb.cgi/ffmpeg.git/?a=commit;h=78f95f10887f7273a861268e9e6b93411f59ed20
---
libavfilter/Makefile | 3 -
libavfilter/dnn/Makefile | 10 -
libavfilter/dnn/dnn_backend_native.c | 561 ---------------------
libavfilter/dnn/dnn_backend_native.h | 149 ------
libavfilter/dnn/dnn_backend_native_layer_avgpool.c | 147 ------
libavfilter/dnn/dnn_backend_native_layer_avgpool.h | 69 ---
libavfilter/dnn/dnn_backend_native_layer_conv2d.c | 265 ----------
libavfilter/dnn/dnn_backend_native_layer_conv2d.h | 68 ---
libavfilter/dnn/dnn_backend_native_layer_dense.c | 151 ------
libavfilter/dnn/dnn_backend_native_layer_dense.h | 65 ---
.../dnn/dnn_backend_native_layer_depth2space.c | 102 ----
.../dnn/dnn_backend_native_layer_depth2space.h | 72 ---
.../dnn/dnn_backend_native_layer_mathbinary.c | 193 -------
.../dnn/dnn_backend_native_layer_mathbinary.h | 54 --
.../dnn/dnn_backend_native_layer_mathunary.c | 156 ------
.../dnn/dnn_backend_native_layer_mathunary.h | 92 ----
libavfilter/dnn/dnn_backend_native_layer_maximum.c | 83 ---
libavfilter/dnn/dnn_backend_native_layer_maximum.h | 44 --
libavfilter/dnn/dnn_backend_native_layer_pad.c | 268 ----------
libavfilter/dnn/dnn_backend_native_layer_pad.h | 43 --
libavfilter/dnn/dnn_backend_native_layers.c | 42 --
libavfilter/dnn/dnn_backend_native_layers.h | 38 --
libavfilter/dnn/dnn_backend_tf.c | 368 +-------------
libavfilter/dnn_interface.h | 2 +-
libavfilter/tests/dnn-layer-avgpool.c | 197 --------
libavfilter/tests/dnn-layer-conv2d.c | 248 ---------
libavfilter/tests/dnn-layer-dense.c | 131 -----
libavfilter/tests/dnn-layer-depth2space.c | 102 ----
libavfilter/tests/dnn-layer-mathbinary.c | 214 --------
libavfilter/tests/dnn-layer-mathunary.c | 148 ------
libavfilter/tests/dnn-layer-maximum.c | 71 ---
libavfilter/tests/dnn-layer-pad.c | 239 ---------
libavfilter/vf_derain.c | 1 -
libavfilter/vf_dnn_processing.c | 1 -
libavfilter/vf_sr.c | 1 -
tests/Makefile | 1 -
tests/fate/dnn.mak | 45 --
37 files changed, 4 insertions(+), 4440 deletions(-)
diff --git a/libavfilter/Makefile b/libavfilter/Makefile
index 3347e283d9..70bfc78c32 100644
--- a/libavfilter/Makefile
+++ b/libavfilter/Makefile
@@ -635,9 +635,6 @@ SKIPHEADERS-$(CONFIG_VULKAN) += vulkan.h vulkan_filter.h
TOOLS = graph2dot
TESTPROGS = drawutils filtfmts formats integral
-TESTPROGS-$(CONFIG_DNN) += dnn-layer-avgpool dnn-layer-conv2d dnn-layer-dense \
- dnn-layer-depth2space dnn-layer-mathbinary \
- dnn-layer-mathunary dnn-layer-maximum dnn-layer-pad \
TOOLS-$(CONFIG_LIBZMQ) += zmqsend
diff --git a/libavfilter/dnn/Makefile b/libavfilter/dnn/Makefile
index 4cfbce0efc..5d5697ea42 100644
--- a/libavfilter/dnn/Makefile
+++ b/libavfilter/dnn/Makefile
@@ -3,16 +3,6 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_io_proc.o
OBJS-$(CONFIG_DNN) += dnn/queue.o
OBJS-$(CONFIG_DNN) += dnn/safe_queue.o
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_common.o
-OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o
-OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o
-OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_avgpool.o
-OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_dense.o
-OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o
-OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o
-OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o
-OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_maximum.o
-OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathbinary.o
-OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathunary.o
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
DNN-OBJS-$(CONFIG_LIBOPENVINO) += dnn/dnn_backend_openvino.o
diff --git a/libavfilter/dnn/dnn_backend_native.c b/libavfilter/dnn/dnn_backend_native.c
deleted file mode 100644
index b53799f04d..0000000000
--- a/libavfilter/dnn/dnn_backend_native.c
+++ /dev/null
@@ -1,561 +0,0 @@
-/*
- * Copyright (c) 2018 Sergey Lavrushkin
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN native backend implementation.
- */
-
-#include "dnn_backend_native.h"
-#include "libavutil/avassert.h"
-#include "dnn_backend_native_layer_conv2d.h"
-#include "dnn_backend_native_layers.h"
-#include "dnn_io_proc.h"
-#include "dnn_backend_common.h"
-
-#define OFFSET(x) offsetof(NativeContext, x)
-#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
-static const AVOption dnn_native_options[] = {
- { "conv2d_threads", "threads num for conv2d layer", OFFSET(options.conv2d_threads), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, FLAGS },
- { "async", "use DNN async inference", OFFSET(options.async), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
- { NULL },
-};
-
-static const AVClass dnn_native_class = {
- .class_name = "dnn_native",
- .item_name = av_default_item_name,
- .option = dnn_native_options,
- .version = LIBAVUTIL_VERSION_INT,
- .category = AV_CLASS_CATEGORY_FILTER,
-};
-
-static int execute_model_native(Queue *lltask_queue);
-
-static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
-{
- NativeModel *native_model = task->model;
- NativeContext *ctx = &native_model->ctx;
- LastLevelTaskItem *lltask = av_malloc(sizeof(*lltask));
-
- if (!lltask) {
- av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for LastLevelTaskItem\n");
- return AVERROR(ENOMEM);
- }
- task->inference_todo = 1;
- task->inference_done = 0;
- lltask->task = task;
-
- if (ff_queue_push_back(lltask_queue, lltask) < 0) {
- av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n");
- av_freep(&lltask);
- return AVERROR(ENOMEM);
- }
- return 0;
-}
-
-static int get_input_native(void *model, DNNData *input, const char *input_name)
-{
- NativeModel *native_model = model;
- NativeContext *ctx = &native_model->ctx;
-
- for (int i = 0; i < native_model->operands_num; ++i) {
- DnnOperand *oprd = &native_model->operands[i];
- if (strcmp(oprd->name, input_name) == 0) {
- if (oprd->type != DOT_INPUT) {
- av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", input_name);
- return AVERROR(EINVAL);
- }
- input->dt = oprd->data_type;
- av_assert0(oprd->dims[0] == 1);
- input->height = oprd->dims[1];
- input->width = oprd->dims[2];
- input->channels = oprd->dims[3];
- return 0;
- }
- }
-
- // do not find the input operand
- av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name);
- return AVERROR(EINVAL);
-}
-
-static int get_output_native(void *model, const char *input_name, int input_width, int input_height,
- const char *output_name, int *output_width, int *output_height)
-{
- int ret = 0;
- NativeModel *native_model = model;
- NativeContext *ctx = &native_model->ctx;
- TaskItem task;
- DNNExecBaseParams exec_params = {
- .input_name = input_name,
- .output_names = &output_name,
- .nb_output = 1,
- .in_frame = NULL,
- .out_frame = NULL,
- };
-
- ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, native_model, input_height, input_width, ctx);
- if (ret != 0) {
- goto err;
- }
-
- ret = extract_lltask_from_task(&task, native_model->lltask_queue);
- if (ret != 0) {
- av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
- goto err;
- }
-
- ret = execute_model_native(native_model->lltask_queue);
- *output_width = task.out_frame->width;
- *output_height = task.out_frame->height;
-
-err:
- av_frame_free(&task.out_frame);
- av_frame_free(&task.in_frame);
- return ret;
-}
-
-// Loads model and its parameters that are stored in a binary file with following structure:
-// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters...
-// For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases
-// For DEPTH_TO_SPACE layer: block_size
-DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
-{
-#define DNN_NATIVE_MAGIC "FFMPEGDNNNATIVE"
- DNNModel *model = NULL;
- // sizeof - 1 to skip the terminating '\0' which is not written in the file
- char buf[sizeof(DNN_NATIVE_MAGIC) - 1];
- int version, header_size, major_version_expected = 1;
- NativeModel *native_model = NULL;
- AVIOContext *model_file_context;
- int file_size, dnn_size, parsed_size;
- int32_t layer;
- DNNLayerType layer_type;
-
- if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
- return NULL;
- }
- file_size = avio_size(model_file_context);
-
- model = av_mallocz(sizeof(DNNModel));
- if (!model){
- goto fail;
- }
-
- /**
- * check file header with string and version
- */
- if (avio_read(model_file_context, buf, sizeof(buf)) != sizeof(buf) ||
- memcmp(buf, DNN_NATIVE_MAGIC, sizeof(buf)))
- goto fail;
- dnn_size = sizeof(buf);
-
- version = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
- if (version != major_version_expected) {
- goto fail;
- }
-
- // currently no need to check minor version
- version = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
- header_size = dnn_size;
-
- native_model = av_mallocz(sizeof(NativeModel));
- if (!native_model){
- goto fail;
- }
- model->model = native_model;
-
- native_model->ctx.class = &dnn_native_class;
- model->options = options;
- if (av_opt_set_from_string(&native_model->ctx, model->options, NULL, "=", "&") < 0)
- goto fail;
- native_model->model = model;
-
- if (native_model->ctx.options.async) {
- av_log(&native_model->ctx, AV_LOG_WARNING, "Async not supported. Rolling back to sync\n");
- native_model->ctx.options.async = 0;
- }
-
-#if !HAVE_PTHREAD_CANCEL
- if (native_model->ctx.options.conv2d_threads > 1){
- av_log(&native_model->ctx, AV_LOG_WARNING, "'conv2d_threads' option was set but it is not supported "
- "on this build (pthread support is required)\n");
- }
-#endif
-
- avio_seek(model_file_context, file_size - 8, SEEK_SET);
- native_model->layers_num = (int32_t)avio_rl32(model_file_context);
- native_model->operands_num = (int32_t)avio_rl32(model_file_context);
- dnn_size += 8;
- avio_seek(model_file_context, header_size, SEEK_SET);
-
- native_model->layers = av_mallocz(native_model->layers_num * sizeof(Layer));
- if (!native_model->layers){
- goto fail;
- }
-
- native_model->operands = av_mallocz(native_model->operands_num * sizeof(DnnOperand));
- if (!native_model->operands){
- goto fail;
- }
-
- native_model->task_queue = ff_queue_create();
- if (!native_model->task_queue) {
- goto fail;
- }
-
- native_model->lltask_queue = ff_queue_create();
- if (!native_model->lltask_queue) {
- goto fail;
- }
-
- for (layer = 0; layer < native_model->layers_num; ++layer){
- layer_type = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
-
- if (layer_type >= DLT_COUNT) {
- goto fail;
- }
-
- native_model->layers[layer].type = layer_type;
- parsed_size = ff_layer_funcs[layer_type].pf_load(&native_model->layers[layer], model_file_context, file_size, native_model->operands_num);
- if (!parsed_size) {
- goto fail;
- }
- dnn_size += parsed_size;
- }
-
- for (int32_t i = 0; i < native_model->operands_num; ++i){
- DnnOperand *oprd;
- int32_t name_len;
- int32_t operand_index = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
-
- if (operand_index >= native_model->operands_num) {
- goto fail;
- }
-
- oprd = &native_model->operands[operand_index];
- name_len = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
-
- avio_get_str(model_file_context, name_len, oprd->name, sizeof(oprd->name));
- dnn_size += name_len;
-
- oprd->type = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
-
- oprd->data_type = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
-
- for (int32_t dim = 0; dim < 4; ++dim) {
- oprd->dims[dim] = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
- }
- if (oprd->type == DOT_INPUT && oprd->dims[0] != 1)
- goto fail;
-
- oprd->isNHWC = 1;
- }
-
- avio_closep(&model_file_context);
-
- if (dnn_size != file_size){
- ff_dnn_free_model_native(&model);
- return NULL;
- }
-
- model->get_input = &get_input_native;
- model->get_output = &get_output_native;
- model->filter_ctx = filter_ctx;
- model->func_type = func_type;
-
- return model;
-
-fail:
- ff_dnn_free_model_native(&model);
- avio_closep(&model_file_context);
- return NULL;
-}
-
-static int execute_model_native(Queue *lltask_queue)
-{
- NativeModel *native_model = NULL;
- NativeContext *ctx = NULL;
- int32_t layer;
- DNNData input, output;
- DnnOperand *oprd = NULL;
- LastLevelTaskItem *lltask = NULL;
- TaskItem *task = NULL;
- int ret = 0;
-
- lltask = ff_queue_pop_front(lltask_queue);
- if (!lltask) {
- av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n");
- ret = AVERROR(EINVAL);
- goto err;
- }
- task = lltask->task;
- native_model = task->model;
- ctx = &native_model->ctx;
-
- if (native_model->layers_num <= 0 || native_model->operands_num <= 0) {
- av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n");
- ret = AVERROR(EINVAL);
- goto err;
- }
-
- for (int i = 0; i < native_model->operands_num; ++i) {
- oprd = &native_model->operands[i];
- if (strcmp(oprd->name, task->input_name) == 0) {
- if (oprd->type != DOT_INPUT) {
- av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", task->input_name);
- ret = AVERROR(EINVAL);
- goto err;
- }
- break;
- }
- oprd = NULL;
- }
- if (!oprd) {
- av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name);
- ret = AVERROR(EINVAL);
- goto err;
- }
-
- oprd->dims[1] = task->in_frame->height;
- oprd->dims[2] = task->in_frame->width;
-
- av_freep(&oprd->data);
- oprd->length = ff_calculate_operand_data_length(oprd);
- if (oprd->length <= 0) {
- av_log(ctx, AV_LOG_ERROR, "The input data length overflow\n");
- ret = AVERROR(EINVAL);
- goto err;
- }
- oprd->data = av_malloc(oprd->length);
- if (!oprd->data) {
- av_log(ctx, AV_LOG_ERROR, "Failed to malloc memory for input data\n");
- ret = AVERROR(ENOMEM);
- goto err;
- }
-
- input.height = oprd->dims[1];
- input.width = oprd->dims[2];
- input.channels = oprd->dims[3];
- input.data = oprd->data;
- input.dt = oprd->data_type;
- if (task->do_ioproc) {
- if (native_model->model->frame_pre_proc != NULL) {
- native_model->model->frame_pre_proc(task->in_frame, &input, native_model->model->filter_ctx);
- } else {
- ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
- }
- }
-
- if (task->nb_output != 1) {
- // currently, the filter does not need multiple outputs,
- // so we just pending the support until we really need it.
- avpriv_report_missing_feature(ctx, "multiple outputs");
- ret = AVERROR(ENOSYS);
- goto err;
- }
-
- for (layer = 0; layer < native_model->layers_num; ++layer){
- DNNLayerType layer_type = native_model->layers[layer].type;
- ret = ff_layer_funcs[layer_type].pf_exec(native_model->operands,
- native_model->layers[layer].input_operand_indexes,
- native_model->layers[layer].output_operand_index,
- native_model->layers[layer].params,
- &native_model->ctx);
- if (ret != 0) {
- av_log(ctx, AV_LOG_ERROR, "Failed to execute model\n");
- goto err;
- }
- }
-
- for (uint32_t i = 0; i < task->nb_output; ++i) {
- DnnOperand *oprd = NULL;
- const char *output_name = task->output_names[i];
- for (int j = 0; j < native_model->operands_num; ++j) {
- if (strcmp(native_model->operands[j].name, output_name) == 0) {
- oprd = &native_model->operands[j];
- break;
- }
- }
-
- if (oprd == NULL) {
- av_log(ctx, AV_LOG_ERROR, "Could not find output in model\n");
- ret = AVERROR(EINVAL);
- goto err;
- }
-
- output.data = oprd->data;
- output.height = oprd->dims[1];
- output.width = oprd->dims[2];
- output.channels = oprd->dims[3];
- output.dt = oprd->data_type;
-
- if (task->do_ioproc) {
- if (native_model->model->frame_post_proc != NULL) {
- native_model->model->frame_post_proc(task->out_frame, &output, native_model->model->filter_ctx);
- } else {
- ff_proc_from_dnn_to_frame(task->out_frame, &output, ctx);
- }
- } else {
- task->out_frame->width = output.width;
- task->out_frame->height = output.height;
- }
- }
- task->inference_done++;
-err:
- av_freep(&lltask);
- return ret;
-}
-
-int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params)
-{
- NativeModel *native_model = model->model;
- NativeContext *ctx = &native_model->ctx;
- TaskItem *task;
- int ret = 0;
-
- ret = ff_check_exec_params(ctx, DNN_NATIVE, model->func_type, exec_params);
- if (ret != 0) {
- return ret;
- }
-
- task = av_malloc(sizeof(*task));
- if (!task) {
- av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n");
- return AVERROR(ENOMEM);
- }
-
- ret = ff_dnn_fill_task(task, exec_params, native_model, ctx->options.async, 1);
- if (ret != 0) {
- av_freep(&task);
- return ret;
- }
-
- if (ff_queue_push_back(native_model->task_queue, task) < 0) {
- av_freep(&task);
- av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
- return AVERROR(ENOMEM);
- }
-
- ret = extract_lltask_from_task(task, native_model->lltask_queue);
- if (ret != 0) {
- av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
- return ret;
- }
-
- return execute_model_native(native_model->lltask_queue);
-}
-
-int ff_dnn_flush_native(const DNNModel *model)
-{
- NativeModel *native_model = model->model;
-
- if (ff_queue_size(native_model->lltask_queue) == 0) {
- // no pending task need to flush
- return 0;
- }
-
- // for now, use sync node with flush operation
- // Switch to async when it is supported
- return execute_model_native(native_model->lltask_queue);
-}
-
-DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out)
-{
- NativeModel *native_model = model->model;
- return ff_dnn_get_result_common(native_model->task_queue, in, out);
-}
-
-int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd)
-{
- int32_t result = 1;
- for (int i = 0; i < 4; ++i)
- result *= oprd->dims[i];
-
- return result;
-}
-
-int32_t ff_calculate_operand_data_length(const DnnOperand* oprd)
-{
- // currently, we just support DNN_FLOAT
- uint64_t len = sizeof(float);
- for (int i = 0; i < 4; i++) {
- len *= oprd->dims[i];
- if (len > INT32_MAX)
- return 0;
- }
- return len;
-}
-
-void ff_dnn_free_model_native(DNNModel **model)
-{
- NativeModel *native_model;
- ConvolutionalParams *conv_params;
- int32_t layer;
-
- if (*model)
- {
- if ((*model)->model) {
- native_model = (*model)->model;
- if (native_model->layers) {
- for (layer = 0; layer < native_model->layers_num; ++layer){
- if (native_model->layers[layer].type == DLT_CONV2D){
- conv_params = (ConvolutionalParams *)native_model->layers[layer].params;
- av_freep(&conv_params->kernel);
- av_freep(&conv_params->biases);
- }
- av_freep(&native_model->layers[layer].params);
- }
- av_freep(&native_model->layers);
- }
-
- if (native_model->operands) {
- for (uint32_t operand = 0; operand < native_model->operands_num; ++operand)
- av_freep(&native_model->operands[operand].data);
- av_freep(&native_model->operands);
- }
-
- while (ff_queue_size(native_model->lltask_queue) != 0) {
- LastLevelTaskItem *item = ff_queue_pop_front(native_model->lltask_queue);
- av_freep(&item);
- }
- ff_queue_destroy(native_model->lltask_queue);
-
- while (ff_queue_size(native_model->task_queue) != 0) {
- TaskItem *item = ff_queue_pop_front(native_model->task_queue);
- av_frame_free(&item->in_frame);
- av_frame_free(&item->out_frame);
- av_freep(&item);
- }
- ff_queue_destroy(native_model->task_queue);
-
- av_freep(&native_model);
- }
- av_freep(model);
- }
-}
diff --git a/libavfilter/dnn/dnn_backend_native.h b/libavfilter/dnn/dnn_backend_native.h
deleted file mode 100644
index 75bd9a44f7..0000000000
--- a/libavfilter/dnn/dnn_backend_native.h
+++ /dev/null
@@ -1,149 +0,0 @@
-/*
- * Copyright (c) 2018 Sergey Lavrushkin
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN inference functions interface for native backend.
- */
-
-
-#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_H
-#define AVFILTER_DNN_DNN_BACKEND_NATIVE_H
-
-#include "../dnn_interface.h"
-#include "libavformat/avio.h"
-#include "libavutil/opt.h"
-#include "queue.h"
-
-/**
- * the enum value of DNNLayerType should not be changed,
- * the same values are used in convert_from_tensorflow.py
- * and, it is used to index the layer execution/load function pointer.
- */
-typedef enum {
- DLT_INPUT = 0,
- DLT_CONV2D = 1,
- DLT_DEPTH_TO_SPACE = 2,
- DLT_MIRROR_PAD = 3,
- DLT_MAXIMUM = 4,
- DLT_MATH_BINARY = 5,
- DLT_MATH_UNARY = 6,
- DLT_AVG_POOL = 7,
- DLT_DENSE = 8,
- DLT_COUNT
-} DNNLayerType;
-
-typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_OUTPUT} DNNOperandType;
-typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingParam;
-typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
-
-typedef struct Layer{
- DNNLayerType type;
- /**
- * a layer can have multiple inputs and one output.
- * 4 is just a big enough number for input operands (increase it if necessary),
- * do not use 'int32_t *input_operand_indexes', so we don't worry about mem leaks.
- */
- int32_t input_operand_indexes[4];
- int32_t output_operand_index;
- void *params;
-} Layer;
-
-typedef struct DnnOperand{
- /**
- * there are two memory layouts, NHWC or NCHW, so we use dims,
- * dims[0] is Number.
- */
- int32_t dims[4];
-
- /**
- * input/output/intermediate operand of the network
- */
- DNNOperandType type;
-
- /**
- * support different kinds of data type such as float, half float, int8 etc,
- * first support float now.
- */
- DNNDataType data_type;
-
- /**
- * NHWC if 1, otherwise NCHW.
- * let's first support NHWC only, this flag is for extensive usage.
- */
- int8_t isNHWC;
-
- /**
- * to avoid possible memory leak, do not use char *name
- */
- char name[128];
-
- /**
- * data pointer with data length in bytes.
- * usedNumbersLeft is only valid for intermediate operand,
- * it means how many layers still depend on this operand,
- * todo: the memory can be reused when usedNumbersLeft is zero.
- */
- void *data;
- int32_t length;
- int32_t usedNumbersLeft;
-}DnnOperand;
-
-typedef struct InputParams{
- int height, width, channels;
-} InputParams;
-
-typedef struct NativeOptions{
- uint8_t async;
- uint32_t conv2d_threads;
-} NativeOptions;
-
-typedef struct NativeContext {
- const AVClass *class;
- NativeOptions options;
-} NativeContext;
-
-// Represents simple feed-forward convolutional network.
-typedef struct NativeModel{
- NativeContext ctx;
- DNNModel *model;
- Layer *layers;
- int32_t layers_num;
- DnnOperand *operands;
- int32_t operands_num;
- Queue *task_queue;
- Queue *lltask_queue;
-} NativeModel;
-
-DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx);
-
-int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params);
-
-DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out);
-
-int ff_dnn_flush_native(const DNNModel *model);
-
-void ff_dnn_free_model_native(DNNModel **model);
-
-// NOTE: User must check for error (return value <= 0) to handle
-// case like integer overflow.
-int32_t ff_calculate_operand_data_length(const DnnOperand *oprd);
-int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd);
-#endif
diff --git a/libavfilter/dnn/dnn_backend_native_layer_avgpool.c b/libavfilter/dnn/dnn_backend_native_layer_avgpool.c
deleted file mode 100644
index d6fcac8a35..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_avgpool.c
+++ /dev/null
@@ -1,147 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN native backend implementation.
- */
-
-#include "libavutil/avassert.h"
-#include "dnn_backend_native_layer_avgpool.h"
-
-int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
-{
- AvgPoolParams *avgpool_params;
- int dnn_size = 0;
- avgpool_params = av_malloc(sizeof(*avgpool_params));
- if(!avgpool_params)
- return 0;
-
- avgpool_params->strides = (int32_t)avio_rl32(model_file_context);
- avgpool_params->padding_method = (int32_t)avio_rl32(model_file_context);
- avgpool_params->kernel_size = (int32_t)avio_rl32(model_file_context);
- dnn_size += 12;
-
- if (dnn_size > file_size || avgpool_params->kernel_size <= 0 || avgpool_params->strides <=0){
- av_freep(&avgpool_params);
- return 0;
- }
-
- layer->params = avgpool_params;
- layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
- layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
- dnn_size += 8;
-
- if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
- return 0;
- }
- return dnn_size;
-}
-
-int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx)
-{
- float *output;
- int height_end, width_end, height_radius, width_radius, output_height, output_width, kernel_area;
- int32_t input_operand_index = input_operand_indexes[0];
- int number = operands[input_operand_index].dims[0];
- int height = operands[input_operand_index].dims[1];
- int width = operands[input_operand_index].dims[2];
- int channel = operands[input_operand_index].dims[3];
- const float *input = operands[input_operand_index].data;
- const AvgPoolParams *avgpool_params = parameters;
-
- int kernel_strides = avgpool_params->strides;
- int src_linesize = width * channel;
- DnnOperand *output_operand = &operands[output_operand_index];
-
- /**
- * When padding_method = SAME, the tensorflow will only padding the hald number of 0 pixels
- * except the remainders.
- * Eg: assuming the input height = 1080, the strides = 11, so the remainders = 1080 % 11 = 2
- * and if ksize = 5: it will fill (5 - 2) >> 1 = 1 line before the first line of input image,
- * and 5 - 2 - 1 = 2 lines after the last line of input image.
- * and if ksize = 7: it will fill (7 - 2) >> 1 = 2 lines before the first line of input image,
- * and 7 - 2 - 2 = 3 lines after the last line of input image.
- */
- if (avgpool_params->padding_method == SAME) {
- height_end = height;
- width_end = width;
- height_radius = avgpool_params->kernel_size - ((height - 1) % kernel_strides + 1);
- width_radius = avgpool_params->kernel_size - ((width - 1) % kernel_strides + 1);
- height_radius = height_radius < 0 ? 0 : height_radius >> 1;
- width_radius = width_radius < 0 ? 0 : width_radius >> 1;
- output_height = ceil(height / (kernel_strides * 1.0));
- output_width = ceil(width / (kernel_strides * 1.0));
- } else {
- av_assert0(avgpool_params->padding_method == VALID);
- height_end = height - avgpool_params->kernel_size + 1;
- width_end = width - avgpool_params->kernel_size + 1;
- height_radius = 0;
- width_radius = 0;
- output_height = ceil((height - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0));
- output_width = ceil((width - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0));
- }
-
- output_operand->dims[0] = number;
- output_operand->dims[1] = output_height;
- output_operand->dims[2] = output_width;
- // not support pooling in channel dimension now
- output_operand->dims[3] = channel;
- output_operand->data_type = operands[input_operand_index].data_type;
- output_operand->length = ff_calculate_operand_data_length(output_operand);
- if (output_operand->length <= 0) {
- av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
- return AVERROR(EINVAL);
- }
- output_operand->data = av_realloc(output_operand->data, output_operand->length);
- if (!output_operand->data) {
- av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
- return AVERROR(ENOMEM);
- }
- output = output_operand->data;
-
- for (int y = 0; y < height_end; y += kernel_strides) {
- for (int x = 0; x < width_end; x += kernel_strides) {
- for (int n_channel = 0; n_channel < channel; ++n_channel) {
- output[n_channel] = 0.0;
- kernel_area = 0;
- for (int kernel_y = 0; kernel_y < avgpool_params->kernel_size; ++kernel_y) {
- for (int kernel_x = 0; kernel_x < avgpool_params->kernel_size; ++kernel_x) {
- float input_pel;
- int y_pos = y + (kernel_y - height_radius);
- int x_pos = x + (kernel_x - width_radius);
- if (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) {
- input_pel = 0.0;
- } else {
- kernel_area++;
- input_pel = input[y_pos * src_linesize + x_pos * channel + n_channel];
- }
- output[n_channel] += input_pel;
- }
- }
- output[n_channel] /= kernel_area;
- }
- output += channel;
- }
- }
-
- return 0;
-}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_avgpool.h b/libavfilter/dnn/dnn_backend_native_layer_avgpool.h
deleted file mode 100644
index 118a160090..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_avgpool.h
+++ /dev/null
@@ -1,69 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN inference functions interface for native backend.
- */
-
-#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H
-#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H
-
-#include "dnn_backend_native.h"
-
-typedef struct AvgPoolParams{
- int32_t strides, kernel_size;
- DNNPaddingParam padding_method;
-} AvgPoolParams;
-
-/**
- * @brief Load Average Pooling Layer.
- *
- * It assigns the Average Pooling layer with AvgPoolParams
- * after parsing from the model file context.
- *
- * @param layer pointer to the DNN layer instance
- * @param model_file_context pointer to model file context
- * @param file_size model file size to check if data is read
- * correctly from the model file
- * @param operands_num operand count of the whole model to
- * check if data is read correctly from the model file
- * @return number of bytes read from the model file
- * @retval 0 if out of memory or an error occurs
- */
-int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
-
-/**
- * @brief Execute the Average Pooling Layer.
- * Padding in channel dimensions is currently not supported.
- *
- * @param operands all operands for the model
- * @param input_operand_indexes input operand indexes for this layer
- * @param output_operand_index output operand index for this layer
- * @param parameters average pooling parameters
- * @param ctx pointer to Native model context for logging
- * @retval 0 if the execution succeeds
- * @retval AVERROR(ENOMEM) if memory allocation fails
- * @retval AVERROR(EINVAL) for invalid arguments
- */
-int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx);
-
-#endif
diff --git a/libavfilter/dnn/dnn_backend_native_layer_conv2d.c b/libavfilter/dnn/dnn_backend_native_layer_conv2d.c
deleted file mode 100644
index 2ac37d8855..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_conv2d.c
+++ /dev/null
@@ -1,265 +0,0 @@
-/*
- * Copyright (c) 2018 Sergey Lavrushkin
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include "libavutil/avassert.h"
-#include "libavutil/thread.h"
-#include "libavutil/cpu.h"
-#include "dnn_backend_native_layer_conv2d.h"
-
-#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
-
-//struct to pass parameters
-typedef struct ThreadCommonParam{
- DnnOperand *operands;
- const int32_t *input_operand_indexes;
- int32_t output_operand_index;
- const void *parameters;
- NativeContext *ctx;
- float *output_data;
-} ThreadCommonParam;
-
-typedef struct ThreadParam{
- ThreadCommonParam *thread_common_param;
- int thread_start, thread_end;
-#if HAVE_PTHREAD_CANCEL
- pthread_t thread;
-#endif
-} ThreadParam;
-
-int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
-{
- ConvolutionalParams *conv_params;
- int kernel_size;
- int dnn_size = 0;
- conv_params = av_malloc(sizeof(*conv_params));
- if (!conv_params)
- return 0;
-
- conv_params->dilation = (int32_t)avio_rl32(model_file_context);
- conv_params->padding_method = (int32_t)avio_rl32(model_file_context);
- conv_params->activation = (int32_t)avio_rl32(model_file_context);
- conv_params->input_num = (int32_t)avio_rl32(model_file_context);
- conv_params->output_num = (int32_t)avio_rl32(model_file_context);
- conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
- conv_params->has_bias = (int32_t)avio_rl32(model_file_context);
- dnn_size += 28;
-
- kernel_size = conv_params->input_num * conv_params->output_num *
- conv_params->kernel_size * conv_params->kernel_size;
- dnn_size += kernel_size * 4;
- if (conv_params->has_bias)
- dnn_size += conv_params->output_num * 4;
-
- if (dnn_size > file_size || conv_params->input_num <= 0 ||
- conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
- av_freep(&conv_params);
- return 0;
- }
-
- conv_params->kernel = av_malloc_array(kernel_size, sizeof(*conv_params->kernel));
- if (!conv_params->kernel) {
- av_freep(&conv_params);
- return 0;
- }
- for (int i = 0; i < kernel_size; ++i) {
- conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
- }
-
- conv_params->biases = NULL;
- if (conv_params->has_bias) {
- conv_params->biases = av_malloc_array(conv_params->output_num, sizeof(*conv_params->biases));
- if (!conv_params->biases){
- av_freep(&conv_params->kernel);
- av_freep(&conv_params);
- return 0;
- }
- for (int i = 0; i < conv_params->output_num; ++i){
- conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
- }
- }
-
- layer->params = conv_params;
-
- layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
- layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
- dnn_size += 8;
-
- if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
- return 0;
- }
-
- return dnn_size;
-}
-
-static void * dnn_execute_layer_conv2d_thread(void *threadarg)
-{
- //pass parameters
- ThreadParam *thread_param = threadarg;
- ThreadCommonParam *thread_common_param = thread_param->thread_common_param;
- DnnOperand *operands = thread_common_param->operands;
- int32_t input_operand_index = thread_common_param->input_operand_indexes[0];
- int height = operands[input_operand_index].dims[1];
- int width = operands[input_operand_index].dims[2];
- int channel = operands[input_operand_index].dims[3];
- const float *input = operands[input_operand_index].data;
- const ConvolutionalParams *conv_params = thread_common_param->parameters;
-
- int radius = conv_params->kernel_size >> 1;
- int src_linesize = width * conv_params->input_num;
- int filter_linesize = conv_params->kernel_size * conv_params->input_num;
- int filter_size = conv_params->kernel_size * filter_linesize;
- int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
-
- float *output = thread_common_param->output_data;
- output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size);
-
- av_assert0(channel == conv_params->input_num);
-
- for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) {
- for (int x = pad_size; x < width - pad_size; ++x) {
- for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
- if (conv_params->has_bias)
- output[n_filter] = conv_params->biases[n_filter];
- else
- output[n_filter] = 0.f;
-
- for (int ch = 0; ch < conv_params->input_num; ++ch) {
- for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
- for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
- float input_pel;
- if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
- int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
- int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
- input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
- } else {
- int y_pos = y + (kernel_y - radius) * conv_params->dilation;
- int x_pos = x + (kernel_x - radius) * conv_params->dilation;
- input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
- input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
- }
-
-
- output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
- kernel_x * conv_params->input_num + ch];
- }
- }
- }
- switch (conv_params->activation){
- case RELU:
- output[n_filter] = FFMAX(output[n_filter], 0.0);
- break;
- case TANH:
- output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
- break;
- case SIGMOID:
- output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
- break;
- case NONE:
- break;
- case LEAKY_RELU:
- output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
- }
- }
- output += conv_params->output_num;
- }
- }
- return NULL;
-}
-
-
-int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx)
-{
-#if HAVE_PTHREAD_CANCEL
- int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count())
- ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads);
- int ret = 0, thread_stride;
- ThreadParam *thread_param;
-#else
- ThreadParam thread_param = { 0 };
-#endif
- ThreadCommonParam thread_common_param;
- const ConvolutionalParams *conv_params = parameters;
- int height = operands[input_operand_indexes[0]].dims[1];
- int width = operands[input_operand_indexes[0]].dims[2];
- int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
- DnnOperand *output_operand = &operands[output_operand_index];
- void *tmp;
-
- output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0];
- output_operand->dims[1] = height - pad_size * 2;
- output_operand->dims[2] = width - pad_size * 2;
- output_operand->dims[3] = conv_params->output_num;
- output_operand->data_type = operands[input_operand_indexes[0]].data_type;
- output_operand->length = ff_calculate_operand_data_length(output_operand);
- if (output_operand->length <= 0) {
- av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
- return AVERROR(EINVAL);
- }
- tmp = av_realloc(output_operand->data, output_operand->length);
- if (!tmp) {
- av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
- return AVERROR(ENOMEM);
- }
- output_operand->data = tmp;
- thread_common_param.output_data = output_operand->data;
- thread_common_param.operands = operands;
- thread_common_param.input_operand_indexes = input_operand_indexes;
- thread_common_param.output_operand_index = output_operand_index;
- thread_common_param.parameters = parameters;
- thread_common_param.ctx = ctx;
-
-#if HAVE_PTHREAD_CANCEL
- thread_param = av_malloc_array(thread_num, sizeof(*thread_param));
- if (!thread_param)
- return AVERROR(ENOMEM);
- thread_stride = (height - pad_size * 2) / thread_num;
- //create threads
- for (int i = 0; i < thread_num; i++){
- int thread_ret = 0;
- thread_param[i].thread_common_param = &thread_common_param;
- thread_param[i].thread_start = thread_stride * i + pad_size;
- thread_param[i].thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i].thread_start + thread_stride);
- thread_ret = pthread_create(&thread_param[i].thread, NULL,
- dnn_execute_layer_conv2d_thread, &thread_param[i]);
- if (thread_ret) {
- thread_num = i;
- ret = AVERROR(thread_ret);
- break;
- }
- }
-
- for (int i = 0; i < thread_num; i++){
- pthread_join(thread_param[i].thread, NULL);
- }
-
- //release memory
- av_freep(&thread_param);
-
- return ret;
-#else
- thread_param.thread_common_param = &thread_common_param;
- thread_param.thread_start = pad_size;
- thread_param.thread_end = height - pad_size;
- dnn_execute_layer_conv2d_thread(&thread_param);
-
- return 0;
-#endif
-}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_conv2d.h b/libavfilter/dnn/dnn_backend_native_layer_conv2d.h
deleted file mode 100644
index f754a9ba18..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_conv2d.h
+++ /dev/null
@@ -1,68 +0,0 @@
-/*
- * Copyright (c) 2018 Sergey Lavrushkin
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H
-#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H
-
-#include "dnn_backend_native.h"
-
-
-typedef struct ConvolutionalParams{
- int32_t input_num, output_num, kernel_size;
- DNNActivationFunc activation;
- DNNPaddingParam padding_method;
- int32_t dilation;
- int32_t has_bias;
- float *kernel;
- float *biases;
-} ConvolutionalParams;
-
-/**
- * @brief Load the 2D Convolution Layer.
- *
- * It assigns the 2D convolution layer with ConvolutionalParams
- * after parsing from the model file context.
- *
- * @param layer pointer to the DNN layer instance
- * @param model_file_context pointer to model file context
- * @param file_size model file size to check if data is read
- * correctly from the model file
- * @param operands_num operand count of the whole model to
- * check if data is read correctly from the model file
- * @return number of bytes read from the model file
- * @retval 0 if out of memory or an error occurs
- */
-int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
-
-/**
- * @brief Execute the 2D Convolution Layer.
- *
- * @param operands all operands for the model
- * @param input_operand_indexes input operand indexes for this layer
- * @param output_operand_index output operand index for this layer
- * @param parameters convolution parameters
- * @param ctx pointer to Native model context for logging
- * @retval 0 if the execution succeeds
- * @retval AVERROR(ENOMEM) if memory allocation fails
- * @retval AVERROR(EINVAL) for invalid arguments
- */
-int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx);
-#endif
diff --git a/libavfilter/dnn/dnn_backend_native_layer_dense.c b/libavfilter/dnn/dnn_backend_native_layer_dense.c
deleted file mode 100644
index dff342c1f3..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_dense.c
+++ /dev/null
@@ -1,151 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include "libavutil/avassert.h"
-#include "dnn_backend_native_layer_dense.h"
-
-int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
-{
- DenseParams *dense_params;
- int kernel_size;
- int dnn_size = 0;
- dense_params = av_malloc(sizeof(*dense_params));
- if (!dense_params)
- return 0;
-
- dense_params->activation = (int32_t)avio_rl32(model_file_context);
- dense_params->input_num = (int32_t)avio_rl32(model_file_context);
- dense_params->output_num = (int32_t)avio_rl32(model_file_context);
- dense_params->has_bias = (int32_t)avio_rl32(model_file_context);
- dnn_size += 16;
-
- kernel_size = dense_params->input_num * dense_params->output_num;
- dnn_size += kernel_size * 4;
- if (dense_params->has_bias)
- dnn_size += dense_params->output_num * 4;
-
- if (dnn_size > file_size || dense_params->input_num <= 0 ||
- dense_params->output_num <= 0){
- av_freep(&dense_params);
- return 0;
- }
-
- dense_params->kernel = av_malloc(kernel_size * sizeof(float));
- if (!dense_params->kernel) {
- av_freep(&dense_params);
- return 0;
- }
- for (int i = 0; i < kernel_size; ++i) {
- dense_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
- }
-
- dense_params->biases = NULL;
- if (dense_params->has_bias) {
- dense_params->biases = av_malloc(dense_params->output_num * sizeof(float));
- if (!dense_params->biases){
- av_freep(&dense_params->kernel);
- av_freep(&dense_params);
- return 0;
- }
- for (int i = 0; i < dense_params->output_num; ++i){
- dense_params->biases[i] = av_int2float(avio_rl32(model_file_context));
- }
- }
-
- layer->params = dense_params;
-
- layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
- layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
- dnn_size += 8;
-
- if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
- return 0;
- }
-
- return dnn_size;
-}
-
-int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx)
-{
- float *output;
- int32_t input_operand_index = input_operand_indexes[0];
- int number = operands[input_operand_index].dims[0];
- int height = operands[input_operand_index].dims[1];
- int width = operands[input_operand_index].dims[2];
- int channel = operands[input_operand_index].dims[3];
- const float *input = operands[input_operand_index].data;
- const DenseParams *dense_params = parameters;
-
- int src_linesize = width * channel;
- DnnOperand *output_operand = &operands[output_operand_index];
- output_operand->dims[0] = number;
- output_operand->dims[1] = height;
- output_operand->dims[2] = width;
- output_operand->dims[3] = dense_params->output_num;
- output_operand->data_type = operands[input_operand_index].data_type;
- output_operand->length = ff_calculate_operand_data_length(output_operand);
- if (output_operand->length <= 0) {
- av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
- return AVERROR(EINVAL);
- }
- output_operand->data = av_realloc(output_operand->data, output_operand->length);
- if (!output_operand->data) {
- av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
- return AVERROR(ENOMEM);
- }
- output = output_operand->data;
-
- av_assert0(channel == dense_params->input_num);
-
- for (int y = 0; y < height; ++y) {
- for (int x = 0; x < width; ++x) {
- for (int n_filter = 0; n_filter < dense_params->output_num; ++n_filter) {
- if (dense_params->has_bias)
- output[n_filter] = dense_params->biases[n_filter];
- else
- output[n_filter] = 0.f;
-
- for (int ch = 0; ch < dense_params->input_num; ++ch) {
- float input_pel;
- input_pel = input[y * src_linesize + x * dense_params->input_num + ch];
- output[n_filter] += input_pel * dense_params->kernel[n_filter*dense_params->input_num + ch];
- }
- switch (dense_params->activation){
- case RELU:
- output[n_filter] = FFMAX(output[n_filter], 0.0);
- break;
- case TANH:
- output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
- break;
- case SIGMOID:
- output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
- break;
- case NONE:
- break;
- case LEAKY_RELU:
- output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
- }
- }
- output += dense_params->output_num;
- }
- }
- return 0;
-}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_dense.h b/libavfilter/dnn/dnn_backend_native_layer_dense.h
deleted file mode 100644
index 607fc3e684..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_dense.h
+++ /dev/null
@@ -1,65 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H
-#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H
-
-#include "dnn_backend_native.h"
-
-typedef struct DenseParams{
- int32_t input_num, output_num;
- DNNActivationFunc activation;
- int32_t has_bias;
- float *kernel;
- float *biases;
-} DenseParams;
-
-/**
- * @brief Load the Densely-Connected Layer.
- *
- * It assigns the densely connected layer with DenseParams
- * after parsing from the model file context.
- *
- * @param layer pointer to the DNN layer instance
- * @param model_file_context pointer to model file context
- * @param file_size model file size to check if data is read
- * correctly from the model file
- * @param operands_num operand count of the whole model to
- * check if data is read correctly from the model file
- * @return number of bytes read from the model file
- * @retval 0 if out of memory or an error occurs
- */
-int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
-
-/**
- * @brief Execute the Densely-Connected Layer.
- *
- * @param operands all operands for the model
- * @param input_operand_indexes input operand indexes for this layer
- * @param output_operand_index output operand index for this layer
- * @param parameters dense layer parameters
- * @param ctx pointer to Native model context for logging
- * @retval 0 if the execution succeeds
- * @retval AVERROR(ENOMEM) if memory allocation fails
- * @retval AVERROR(EINVAL) for invalid arguments
- */
-int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx);
-#endif
diff --git a/libavfilter/dnn/dnn_backend_native_layer_depth2space.c b/libavfilter/dnn/dnn_backend_native_layer_depth2space.c
deleted file mode 100644
index 358ac3bcaa..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_depth2space.c
+++ /dev/null
@@ -1,102 +0,0 @@
-/*
- * Copyright (c) 2018 Sergey Lavrushkin
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN native backend implementation.
- */
-
-#include "dnn_backend_native.h"
-#include "dnn_backend_native_layer_depth2space.h"
-
-int ff_dnn_load_layer_depth2space(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
-{
- DepthToSpaceParams *params;
- int dnn_size = 0;
- params = av_malloc(sizeof(*params));
- if (!params)
- return 0;
-
- params->block_size = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
- layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
- layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
- dnn_size += 8;
- layer->params = params;
-
- if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
- return 0;
- }
-
- return dnn_size;
-}
-
-int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx)
-{
- float *output;
- const DepthToSpaceParams *params = parameters;
- int block_size = params->block_size;
- int32_t input_operand_index = input_operand_indexes[0];
- int number = operands[input_operand_index].dims[0];
- int height = operands[input_operand_index].dims[1];
- int width = operands[input_operand_index].dims[2];
- int channels = operands[input_operand_index].dims[3];
- const float *input = operands[input_operand_index].data;
-
- int y, x, by, bx, ch;
- int new_channels = channels / (block_size * block_size);
- int output_linesize = width * channels;
- int by_linesize = output_linesize / block_size;
- int x_linesize = new_channels * block_size;
-
- DnnOperand *output_operand = &operands[output_operand_index];
- output_operand->dims[0] = number;
- output_operand->dims[1] = height * block_size;
- output_operand->dims[2] = width * block_size;
- output_operand->dims[3] = new_channels;
- output_operand->data_type = operands[input_operand_index].data_type;
- output_operand->length = ff_calculate_operand_data_length(output_operand);
- if (output_operand->length <= 0) {
- av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
- return AVERROR(EINVAL);
- }
- output_operand->data = av_realloc(output_operand->data, output_operand->length);
- if (!output_operand->data) {
- av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
- return AVERROR(ENOMEM);
- }
- output = output_operand->data;
-
- for (y = 0; y < height; ++y){
- for (x = 0; x < width; ++x){
- for (by = 0; by < block_size; ++by){
- for (bx = 0; bx < block_size; ++bx){
- for (ch = 0; ch < new_channels; ++ch){
- output[by * by_linesize + x * x_linesize + bx * new_channels + ch] = input[ch];
- }
- input += new_channels;
- }
- }
- }
- output += output_linesize;
- }
- return 0;
-}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_depth2space.h b/libavfilter/dnn/dnn_backend_native_layer_depth2space.h
deleted file mode 100644
index aaf2df4c13..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_depth2space.h
+++ /dev/null
@@ -1,72 +0,0 @@
-/*
- * Copyright (c) 2018 Sergey Lavrushkin
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN inference functions interface for native backend.
- */
-
-
-#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DEPTH2SPACE_H
-#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DEPTH2SPACE_H
-
-#include "../dnn_interface.h"
-#include "libavformat/avio.h"
-
-typedef struct DepthToSpaceParams{
- int block_size;
-} DepthToSpaceParams;
-
-/**
- * @brief Load the Depth to Space Layer.
- *
- * It assigns the depth to space layer with DepthToSpaceParams
- * after parsing from the model file context.
- *
- * @param layer pointer to the DNN layer instance
- * @param model_file_context pointer to model file context
- * @param file_size model file size to check if data is read
- * correctly from the model file
- * @param operands_num operand count of the whole model to
- * check if data is read correctly from the model file
- * @return number of bytes read from the model file
- * @retval 0 if an error occurs or out of memory
- */
-int ff_dnn_load_layer_depth2space(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
-
-/**
- * @brief Execute the Depth to Space Layer.
- *
- * It rearranges the input data from depth into spatial
- * form by applying Depth to Space transformation.
- *
- * @param operands all operands for the model
- * @param input_operand_indexes input operand indexes for this layer
- * @param output_operand_index output operand index for this layer
- * @param parameters depth to space layer parameters
- * @param ctx pointer to Native model context for logging
- * @retval 0 if the execution succeeds
- * @retval AVERROR(ENOMEM) if memory allocation fails
- * @retval AVERROR(EINVAL) for invalid arguments
- */
-int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx);
-
-#endif
diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c b/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c
deleted file mode 100644
index 1a3fa3f132..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c
+++ /dev/null
@@ -1,193 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN native backend implementation.
- */
-
-#include "dnn_backend_native.h"
-#include "dnn_backend_native_layer_mathbinary.h"
-
-typedef float (*FunType)(float src0, float src1);
-
-static float sub(float src0, float src1)
-{
- return src0 - src1;
-}
-static float add(float src0, float src1)
-{
- return src0 + src1;
-}
-static float mul(float src0, float src1)
-{
- return src0 * src1;
-}
-static float realdiv(float src0, float src1)
-{
- return src0 / src1;
-}
-static float minimum(float src0, float src1)
-{
- return FFMIN(src0, src1);
-}
-static float floormod(float src0, float src1)
-{
- return (float)((int)(src0) % (int)(src1));
-}
-
-static void math_binary_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes)
-{
- int dims_count;
- const float *src;
- float *dst;
- dims_count = ff_calculate_operand_dims_count(output);
- src = input->data;
- dst = output->data;
- if (params->input0_broadcast || params->input1_broadcast) {
- for (int i = 0; i < dims_count; ++i) {
- dst[i] = pfun(params->v, src[i]);
- }
- } else {
- const DnnOperand *input1 = &operands[input_operand_indexes[1]];
- const float *src1 = input1->data;
- for (int i = 0; i < dims_count; ++i) {
- dst[i] = pfun(src[i], src1[i]);
- }
- }
-}
-static void math_binary_not_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes)
-{
- int dims_count;
- const float *src;
- float *dst;
- dims_count = ff_calculate_operand_dims_count(output);
- src = input->data;
- dst = output->data;
- if (params->input0_broadcast) {
- for (int i = 0; i < dims_count; ++i) {
- dst[i] = pfun(params->v, src[i]);
- }
- } else if (params->input1_broadcast) {
- for (int i = 0; i < dims_count; ++i) {
- dst[i] = pfun(src[i], params->v);
- }
- } else {
- const DnnOperand *input1 = &operands[input_operand_indexes[1]];
- const float *src1 = input1->data;
- for (int i = 0; i < dims_count; ++i) {
- dst[i] = pfun(src[i], src1[i]);
- }
- }
-}
-int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
-{
- DnnLayerMathBinaryParams params = { 0 };
- int dnn_size = 0;
- int input_index = 0;
-
- params.bin_op = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
-
- params.input0_broadcast = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
- if (params.input0_broadcast) {
- params.v = av_int2float(avio_rl32(model_file_context));
- } else {
- layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context);
- if (layer->input_operand_indexes[input_index] >= operands_num) {
- return 0;
- }
- input_index++;
- }
- dnn_size += 4;
-
- params.input1_broadcast = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
- if (params.input1_broadcast) {
- params.v = av_int2float(avio_rl32(model_file_context));
- } else {
- layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context);
- if (layer->input_operand_indexes[input_index] >= operands_num) {
- return 0;
- }
- input_index++;
- }
- dnn_size += 4;
-
- layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
-
- if (layer->output_operand_index >= operands_num) {
- return 0;
- }
- layer->params = av_memdup(¶ms, sizeof(params));
- if (!layer->params)
- return 0;
-
- return dnn_size;
-}
-
-int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx)
-{
- const DnnOperand *input = &operands[input_operand_indexes[0]];
- DnnOperand *output = &operands[output_operand_index];
- const DnnLayerMathBinaryParams *params = parameters;
-
- for (int i = 0; i < 4; ++i)
- output->dims[i] = input->dims[i];
-
- output->data_type = input->data_type;
- output->length = ff_calculate_operand_data_length(output);
- if (output->length <= 0) {
- av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
- return AVERROR(EINVAL);
- }
- output->data = av_realloc(output->data, output->length);
- if (!output->data) {
- av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
- return AVERROR(ENOMEM);
- }
-
- switch (params->bin_op) {
- case DMBO_SUB:
- math_binary_not_commutative(sub, params, input, output, operands, input_operand_indexes);
- return 0;
- case DMBO_ADD:
- math_binary_commutative(add, params, input, output, operands, input_operand_indexes);
- return 0;
- case DMBO_MUL:
- math_binary_commutative(mul, params, input, output, operands, input_operand_indexes);
- return 0;
- case DMBO_REALDIV:
- math_binary_not_commutative(realdiv, params, input, output, operands, input_operand_indexes);
- return 0;
- case DMBO_MINIMUM:
- math_binary_commutative(minimum, params, input, output, operands, input_operand_indexes);
- return 0;
- case DMBO_FLOORMOD:
- math_binary_not_commutative(floormod, params, input, output, operands, input_operand_indexes);
- return 0;
- default:
- av_log(ctx, AV_LOG_ERROR, "Unmatch math binary operator\n");
- return AVERROR(EINVAL);
- }
-}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h b/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h
deleted file mode 100644
index eee294b00f..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h
+++ /dev/null
@@ -1,54 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN inference functions interface for native backend.
- */
-
-
-#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHBINARY_H
-#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHBINARY_H
-
-#include "libavformat/avio.h"
-#include "dnn_backend_native.h"
-
-typedef enum {
- DMBO_SUB = 0,
- DMBO_ADD = 1,
- DMBO_MUL = 2,
- DMBO_REALDIV = 3,
- DMBO_MINIMUM = 4,
- DMBO_FLOORMOD = 5,
- DMBO_COUNT
-} DNNMathBinaryOperation;
-
-typedef struct DnnLayerMathBinaryParams{
- DNNMathBinaryOperation bin_op;
- int input0_broadcast;
- int input1_broadcast;
- float v;
-} DnnLayerMathBinaryParams;
-
-int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
-int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx);
-
-#endif
diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathunary.c b/libavfilter/dnn/dnn_backend_native_layer_mathunary.c
deleted file mode 100644
index e3c5106e5e..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_mathunary.c
+++ /dev/null
@@ -1,156 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN native backend implementation.
- */
-
-#include <math.h>
-
-#include "dnn_backend_native.h"
-#include "dnn_backend_native_layer_mathunary.h"
-
-int ff_dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
-{
- DnnLayerMathUnaryParams *params;
- int dnn_size = 0;
- params = av_malloc(sizeof(*params));
- if(!params)
- return 0;
-
- params->un_op = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
- layer->params = params;
- layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
- layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
- dnn_size += 8;
-
- if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
- return 0;
- }
-
- return dnn_size;
-
-}
-
-int ff_dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx)
-{
- const DnnOperand *input = &operands[input_operand_indexes[0]];
- DnnOperand *output = &operands[output_operand_index];
- const DnnLayerMathUnaryParams *params = parameters;
- int dims_count;
- const float *src;
- float *dst;
-
- for (int i = 0; i < 4; ++i)
- output->dims[i] = input->dims[i];
-
- output->data_type = input->data_type;
- output->length = ff_calculate_operand_data_length(output);
- if (output->length <= 0) {
- av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
- return AVERROR(EINVAL);
- }
- output->data = av_realloc(output->data, output->length);
- if (!output->data) {
- av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
- return AVERROR(ENOMEM);
- }
-
- dims_count = ff_calculate_operand_dims_count(output);
- src = input->data;
- dst = output->data;
-
- switch (params->un_op) {
- case DMUO_ABS:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = FFABS(src[i]);
- return 0;
- case DMUO_SIN:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = sin(src[i]);
- return 0;
- case DMUO_COS:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = cos(src[i]);
- return 0;
- case DMUO_TAN:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = tan(src[i]);
- return 0;
- case DMUO_ASIN:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = asin(src[i]);
- return 0;
- case DMUO_ACOS:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = acos(src[i]);
- return 0;
- case DMUO_ATAN:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = atan(src[i]);
- return 0;
- case DMUO_SINH:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = sinh(src[i]);
- return 0;
- case DMUO_COSH:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = cosh(src[i]);
- return 0;
- case DMUO_TANH:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = tanh(src[i]);
- return 0;
- case DMUO_ASINH:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = asinh(src[i]);
- return 0;
- case DMUO_ACOSH:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = acosh(src[i]);
- return 0;
- case DMUO_ATANH:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = atanh(src[i]);
- return 0;
- case DMUO_CEIL:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = ceil(src[i]);
- return 0;
- case DMUO_FLOOR:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = floor(src[i]);
- return 0;
- case DMUO_ROUND:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = round(src[i]);
- return 0;
- case DMUO_EXP:
- for (int i = 0; i < dims_count; ++i)
- dst[i] = exp(src[i]);
- return 0;
- default:
- av_log(ctx, AV_LOG_ERROR, "Unmatch math unary operator\n");
- return AVERROR(EINVAL);
- }
-}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathunary.h b/libavfilter/dnn/dnn_backend_native_layer_mathunary.h
deleted file mode 100644
index 806e73b29f..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_mathunary.h
+++ /dev/null
@@ -1,92 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN inference functions interface for native backend.
- */
-
-#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H
-#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H
-
-#include "libavformat/avio.h"
-#include "dnn_backend_native.h"
-
-typedef enum {
- DMUO_ABS = 0,
- DMUO_SIN = 1,
- DMUO_COS = 2,
- DMUO_TAN = 3,
- DMUO_ASIN = 4,
- DMUO_ACOS = 5,
- DMUO_ATAN = 6,
- DMUO_SINH = 7,
- DMUO_COSH = 8,
- DMUO_TANH = 9,
- DMUO_ASINH = 10,
- DMUO_ACOSH = 11,
- DMUO_ATANH = 12,
- DMUO_CEIL = 13,
- DMUO_FLOOR = 14,
- DMUO_ROUND = 15,
- DMUO_EXP = 16,
- DMUO_COUNT
-} DNNMathUnaryOperation;
-
-typedef struct DnnLayerMathUnaryParams{
- DNNMathUnaryOperation un_op;
-} DnnLayerMathUnaryParams;
-
-/**
- * @brief Load the Unary Math Layer.
- *
- * It assigns the unary math layer with DnnLayerMathUnaryParams
- * after parsing from the model file context.
- *
- * @param layer pointer to the DNN layer instance
- * @param model_file_context pointer to model file context
- * @param file_size model file size to check if data is read
- * correctly from the model file
- * @param operands_num operand count of the whole model to
- * check if data is read correctly from the model file
- * @return number of bytes read from the model file
- * @retval 0 if out of memory or an error occurs
- */
-int ff_dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
-
-/**
- * @brief Execute the Unary Math Layer.
- *
- * It applies the unary operator parsed while
- * loading to the given input operands.
- *
- * @param operands all operands for the model
- * @param input_operand_indexes input operand indexes for this layer
- * @param output_operand_index output operand index for this layer
- * @param parameters unary math layer parameters
- * @param ctx pointer to Native model context for logging
- * @retval 0 if the execution succeeds
- * @retval AVERROR(ENOMEM) if memory allocation fails
- * @retval AVERROR(EINVAL) for invalid arguments
- */
-int ff_dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx);
-
-#endif
diff --git a/libavfilter/dnn/dnn_backend_native_layer_maximum.c b/libavfilter/dnn/dnn_backend_native_layer_maximum.c
deleted file mode 100644
index 667efaa3b8..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_maximum.c
+++ /dev/null
@@ -1,83 +0,0 @@
-/*
- * Copyright (c) 2019 Guo Yejun
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN native backend implementation.
- */
-
-#include "dnn_backend_native.h"
-#include "dnn_backend_native_layer_maximum.h"
-
-int ff_dnn_load_layer_maximum(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
-{
- DnnLayerMaximumParams *params;
- int dnn_size = 0;
- params = av_malloc(sizeof(*params));
- if (!params)
- return 0;
-
- params->val.u32 = avio_rl32(model_file_context);
- dnn_size += 4;
- layer->params = params;
- layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
- layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
- dnn_size += 8;
-
- if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
- return 0;
- }
-
- return dnn_size;
-}
-
-int ff_dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx)
-{
- const DnnOperand *input = &operands[input_operand_indexes[0]];
- DnnOperand *output = &operands[output_operand_index];
- const DnnLayerMaximumParams *params = parameters;
- int dims_count;
- const float *src;
- float *dst;
-
- for (int i = 0; i < 4; ++i)
- output->dims[i] = input->dims[i];
-
- output->data_type = input->data_type;
- output->length = ff_calculate_operand_data_length(output);
- if (output->length <= 0) {
- av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
- return AVERROR(EINVAL);
- }
- output->data = av_realloc(output->data, output->length);
- if (!output->data) {
- av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
- return AVERROR(ENOMEM);
- }
-
- dims_count = ff_calculate_operand_dims_count(output);
- src = input->data;
- dst = output->data;
- for (int i = 0; i < dims_count; ++i)
- dst[i] = FFMAX(src[i], params->val.y);
-
- return 0;
-}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_maximum.h b/libavfilter/dnn/dnn_backend_native_layer_maximum.h
deleted file mode 100644
index 523acbe05f..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_maximum.h
+++ /dev/null
@@ -1,44 +0,0 @@
-/*
- * Copyright (c) 2019 Guo Yejun
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * DNN inference functions interface for native backend.
- */
-
-
-#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H
-#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H
-
-#include "libavformat/avio.h"
-#include "dnn_backend_native.h"
-
-typedef struct DnnLayerMaximumParams{
- union {
- uint32_t u32;
- float y;
- }val;
-} DnnLayerMaximumParams;
-
-int ff_dnn_load_layer_maximum(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
-int ff_dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx);
-
-#endif
diff --git a/libavfilter/dnn/dnn_backend_native_layer_pad.c b/libavfilter/dnn/dnn_backend_native_layer_pad.c
deleted file mode 100644
index e274fe12c6..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_pad.c
+++ /dev/null
@@ -1,268 +0,0 @@
-/*
- * Copyright (c) 2019 Guo Yejun
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <string.h>
-#include "libavutil/avassert.h"
-#include "dnn_backend_native_layer_pad.h"
-
-int ff_dnn_load_layer_pad(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
-{
- LayerPadParams *params;
- int dnn_size = 0;
- params = av_malloc(sizeof(*params));
- if (!params)
- return 0;
-
- params->mode = (int32_t)avio_rl32(model_file_context);
- dnn_size += 4;
- for (int i = 0; i < 4; ++i) {
- params->paddings[i][0] = avio_rl32(model_file_context);
- params->paddings[i][1] = avio_rl32(model_file_context);
- dnn_size += 8;
- }
- layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
- layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
- dnn_size += 8;
- layer->params = params;
-
- if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
- return 0;
- }
-
- return dnn_size;
-}
-
-static int before_get_buddy(int given, int paddings, LayerPadModeParam mode)
-{
- if (mode == LPMP_SYMMETRIC) {
- return (2 * paddings - 1 - given);
- } else if (mode == LPMP_REFLECT) {
- return (2 * paddings - given);
- } else {
- av_assert0(!"should not reach here");
- return 0;
- }
-}
-
-static int after_get_buddy(int given, int border, LayerPadModeParam mode)
-{
- if (mode == LPMP_SYMMETRIC) {
- int offset = given - border;
- return (border - 1 - offset);
- } else if (mode == LPMP_REFLECT) {
- int offset = given - border;
- return (border - 2 - offset);
- } else {
- av_assert0(!"should not reach here");
- return 0;
- }
-}
-
-int ff_dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx)
-{
- int32_t before_paddings;
- int32_t after_paddings;
- float* output;
- const LayerPadParams *params = parameters;
-
- // suppose format is <N, H, W, C>
- int32_t input_operand_index = input_operand_indexes[0];
- int number = operands[input_operand_index].dims[0];
- int height = operands[input_operand_index].dims[1];
- int width = operands[input_operand_index].dims[2];
- int channel = operands[input_operand_index].dims[3];
- const float *input = operands[input_operand_index].data;
-
- int new_number = number + params->paddings[0][0] + params->paddings[0][1];
- int new_height = height + params->paddings[1][0] + params->paddings[1][1];
- int new_width = width + params->paddings[2][0] + params->paddings[2][1];
- int new_channel = channel + params->paddings[3][0] + params->paddings[3][1];
-
- int c_stride = channel;
- int wc_stride = c_stride * width;
- int hwc_stride = wc_stride * height;
-
- int new_c_stride = new_channel;
- int new_wc_stride = new_c_stride * new_width;
- int new_hwc_stride = new_wc_stride * new_height;
-
- DnnOperand *output_operand = &operands[output_operand_index];
- output_operand->dims[0] = new_number;
- output_operand->dims[1] = new_height;
- output_operand->dims[2] = new_width;
- output_operand->dims[3] = new_channel;
- output_operand->data_type = operands[input_operand_index].data_type;
- output_operand->length = ff_calculate_operand_data_length(output_operand);
- if (output_operand->length <= 0) {
- av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n");
- return AVERROR(EINVAL);
- }
- output_operand->data = av_realloc(output_operand->data, output_operand->length);
- if (!output_operand->data) {
- av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n");
- return AVERROR(ENOMEM);
- }
- output = output_operand->data;
-
- // copy the original data
- for (int n = 0; n < number; n++) {
- for (int h = 0; h < height; h++) {
- for (int w = 0; w < width; w++) {
- const float *src = input + n * hwc_stride + h * wc_stride + w * c_stride;
- float *dst = output + (n + params->paddings[0][0]) * new_hwc_stride
- + (h + params->paddings[1][0]) * new_wc_stride
- + (w + params->paddings[2][0]) * new_c_stride
- + params->paddings[3][0];
- memcpy(dst, src, channel * sizeof(float));
- }
- }
- }
-
- // handle the first dimension
- before_paddings = params->paddings[0][0];
- after_paddings = params->paddings[0][1];
- for (int n = 0; n < before_paddings; n++) {
- float *dst = output + n * new_hwc_stride;
- if (params->mode == LPMP_CONSTANT) {
- for (int i = 0; i < new_hwc_stride; i++) {
- dst[i] = params->constant_values;
- }
- }
- else {
- int buddy = before_get_buddy(n, before_paddings, params->mode);
- float *src = output + buddy * new_hwc_stride;
- memcpy(dst, src, new_hwc_stride * sizeof(float));
- }
- }
- for (int n = 0; n < after_paddings; n++) {
- int given = number + before_paddings + n;
- float *dst = output + given * new_hwc_stride;
- if (params->mode == LPMP_CONSTANT) {
- for (int i = 0; i < new_hwc_stride; i++) {
- dst[i] = params->constant_values;
- }
- } else {
- int buddy = after_get_buddy(given, number + before_paddings, params->mode);
- float *src = output + buddy * new_hwc_stride;
- memcpy(dst, src, new_hwc_stride * sizeof(float));
- }
- }
-
- // handle the second dimension
- before_paddings = params->paddings[1][0];
- after_paddings = params->paddings[1][1];
- for (int n = 0; n < new_number; n++) {
- float *start = output + n * new_hwc_stride;
- for (int h = 0; h < before_paddings; h++) {
- float *dst = start + h * new_wc_stride;
- if (params->mode == LPMP_CONSTANT) {
- for (int i = 0; i < new_wc_stride; i++) {
- dst[i] = params->constant_values;
- }
- } else {
- int buddy = before_get_buddy(h, before_paddings, params->mode);
- float *src = start + buddy * new_wc_stride;
- memcpy(dst, src, new_wc_stride * sizeof(float));
- }
- }
- for (int h = 0; h < after_paddings; h++) {
- int given = height + before_paddings + h;
- float *dst = start + given * new_wc_stride;
- if (params->mode == LPMP_CONSTANT) {
- for (int i = 0; i < new_wc_stride; i++) {
- dst[i] = params->constant_values;
- }
- } else {
- int buddy = after_get_buddy(given, height + before_paddings, params->mode);
- float *src = start + buddy * new_wc_stride;
- memcpy(dst, src, new_wc_stride * sizeof(float));
- }
- }
- }
-
- // handle the third dimension
- before_paddings = params->paddings[2][0];
- after_paddings = params->paddings[2][1];
- for (int n = 0; n < new_number; n++) {
- for (int h = 0; h < new_height; h++) {
- float *start = output + n * new_hwc_stride + h * new_wc_stride;
- for (int w = 0; w < before_paddings; w++) {
- float *dst = start + w * new_c_stride;
- if (params->mode == LPMP_CONSTANT) {
- for (int i = 0; i < new_c_stride; i++) {
- dst[i] = params->constant_values;
- }
- } else {
- int buddy = before_get_buddy(w, before_paddings, params->mode);
- float *src = start + buddy * new_c_stride;
- memcpy(dst, src, new_c_stride * sizeof(float));
- }
- }
- for (int w = 0; w < after_paddings; w++) {
- int given = width + before_paddings + w;
- float *dst = start + given * new_c_stride;
- if (params->mode == LPMP_CONSTANT) {
- for (int i = 0; i < new_c_stride; i++) {
- dst[i] = params->constant_values;
- }
- } else {
- int buddy = after_get_buddy(given, width + before_paddings, params->mode);
- float *src = start + buddy * new_c_stride;
- memcpy(dst, src, new_c_stride * sizeof(float));
- }
- }
- }
- }
-
- // handle the fourth dimension
- before_paddings = params->paddings[3][0];
- after_paddings = params->paddings[3][1];
- for (int n = 0; n < new_number; n++) {
- for (int h = 0; h < new_height; h++) {
- for (int w = 0; w < new_width; w++) {
- float *start = output + n * new_hwc_stride + h * new_wc_stride + w * new_c_stride;
- for (int c = 0; c < before_paddings; c++) {
- float *dst = start + c;
- if (params->mode == LPMP_CONSTANT) {
- *dst = params->constant_values;
- } else {
- int buddy = before_get_buddy(c, before_paddings, params->mode);
- float *src = start + buddy;
- *dst = *src;
- }
- }
- for (int c = 0; c < after_paddings; c++) {
- int given = channel + before_paddings + c;
- float *dst = start + given;
- if (params->mode == LPMP_CONSTANT) {
- *dst = params->constant_values;
- } else {
- int buddy = after_get_buddy(given, channel + before_paddings, params->mode);
- float *src = start + buddy;
- *dst = *src;
- }
- }
- }
- }
- }
-
- return 0;
-}
diff --git a/libavfilter/dnn/dnn_backend_native_layer_pad.h b/libavfilter/dnn/dnn_backend_native_layer_pad.h
deleted file mode 100644
index 4f76c67c3f..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layer_pad.h
+++ /dev/null
@@ -1,43 +0,0 @@
-/*
- * Copyright (c) 2019 Guo Yejun
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-/**
- * @file
- * layer pad (equivalent to tf.pad) for native backend.
- */
-#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H
-#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H
-
-#include <stdint.h>
-#include "dnn_backend_native.h"
-
-typedef enum {LPMP_CONSTANT, LPMP_REFLECT, LPMP_SYMMETRIC} LayerPadModeParam;
-
-typedef struct LayerPadParams{
- int32_t paddings[4][2];
- LayerPadModeParam mode;
- float constant_values;
-} LayerPadParams;
-
-int ff_dnn_load_layer_pad(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
-int ff_dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx);
-
-#endif
diff --git a/libavfilter/dnn/dnn_backend_native_layers.c b/libavfilter/dnn/dnn_backend_native_layers.c
deleted file mode 100644
index 492939fd36..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layers.c
+++ /dev/null
@@ -1,42 +0,0 @@
-/*
- * Copyright (c) 2019 Guo Yejun
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <string.h>
-#include "dnn_backend_native_layers.h"
-#include "dnn_backend_native_layer_pad.h"
-#include "dnn_backend_native_layer_conv2d.h"
-#include "dnn_backend_native_layer_depth2space.h"
-#include "dnn_backend_native_layer_maximum.h"
-#include "dnn_backend_native_layer_mathbinary.h"
-#include "dnn_backend_native_layer_mathunary.h"
-#include "dnn_backend_native_layer_avgpool.h"
-#include "dnn_backend_native_layer_dense.h"
-
-const LayerFunc ff_layer_funcs[DLT_COUNT] = {
- {NULL, NULL},
- {ff_dnn_execute_layer_conv2d, ff_dnn_load_layer_conv2d},
- {ff_dnn_execute_layer_depth2space, ff_dnn_load_layer_depth2space},
- {ff_dnn_execute_layer_pad, ff_dnn_load_layer_pad},
- {ff_dnn_execute_layer_maximum, ff_dnn_load_layer_maximum},
- {ff_dnn_execute_layer_math_binary, ff_dnn_load_layer_math_binary},
- {ff_dnn_execute_layer_math_unary, ff_dnn_load_layer_math_unary},
- {ff_dnn_execute_layer_avg_pool, ff_dnn_load_layer_avg_pool},
- {ff_dnn_execute_layer_dense, ff_dnn_load_layer_dense},
-};
diff --git a/libavfilter/dnn/dnn_backend_native_layers.h b/libavfilter/dnn/dnn_backend_native_layers.h
deleted file mode 100644
index bbd02927c2..0000000000
--- a/libavfilter/dnn/dnn_backend_native_layers.h
+++ /dev/null
@@ -1,38 +0,0 @@
-/*
- * Copyright (c) 2019 Guo Yejun
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H
-#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H
-
-#include <stdint.h>
-#include "dnn_backend_native.h"
-
-typedef int (*LAYER_EXEC_FUNC)(DnnOperand *operands, const int32_t *input_operand_indexes,
- int32_t output_operand_index, const void *parameters, NativeContext *ctx);
-typedef int (*LAYER_LOAD_FUNC)(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num);
-
-typedef struct LayerFunc {
- LAYER_EXEC_FUNC pf_exec;
- LAYER_LOAD_FUNC pf_load;
-}LayerFunc;
-
-extern const LayerFunc ff_layer_funcs[DLT_COUNT];
-
-#endif
diff --git a/libavfilter/dnn/dnn_backend_tf.c b/libavfilter/dnn/dnn_backend_tf.c
index 3d372a5628..486d2405b8 100644
--- a/libavfilter/dnn/dnn_backend_tf.c
+++ b/libavfilter/dnn/dnn_backend_tf.c
@@ -24,17 +24,13 @@
*/
#include "dnn_backend_tf.h"
-#include "dnn_backend_native.h"
-#include "dnn_backend_native_layer_conv2d.h"
-#include "dnn_backend_native_layer_depth2space.h"
#include "libavformat/avio.h"
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/cpu.h"
+#include "libavutil/opt.h"
#include "libavcodec/defs.h"
#include "../internal.h"
-#include "dnn_backend_native_layer_pad.h"
-#include "dnn_backend_native_layer_maximum.h"
#include "dnn_io_proc.h"
#include "dnn_backend_common.h"
#include "safe_queue.h"
@@ -481,363 +477,6 @@ static int load_tf_model(TFModel *tf_model, const char *model_filename)
#define NAME_BUFFER_SIZE 256
-static int add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op,
- ConvolutionalParams* params, const int layer)
-{
- TFContext *ctx = &tf_model->ctx;
- TF_Operation *op;
- TF_OperationDescription *op_desc;
- TF_Output input;
- int64_t strides[] = {1, 1, 1, 1};
- TF_Tensor *kernel_tensor = NULL, *biases_tensor = NULL;
- int64_t dims[4];
- int dims_len;
- char name_buffer[NAME_BUFFER_SIZE];
- int32_t size;
-
- size = params->input_num * params->output_num * params->kernel_size * params->kernel_size;
- input.index = 0;
-
- snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer);
- op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
- TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
- dims[0] = params->output_num;
- dims[1] = params->kernel_size;
- dims[2] = params->kernel_size;
- dims[3] = params->input_num;
- dims_len = 4;
- kernel_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float));
- memcpy(TF_TensorData(kernel_tensor), params->kernel, size * sizeof(float));
- TF_SetAttrTensor(op_desc, "value", kernel_tensor, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- goto err;
- }
- op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- goto err;
- }
-
- snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer);
- op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer);
- input.oper = op;
- TF_AddInput(op_desc, input);
- input.oper = transpose_op;
- TF_AddInput(op_desc, input);
- TF_SetAttrType(op_desc, "T", TF_FLOAT);
- TF_SetAttrType(op_desc, "Tperm", TF_INT32);
- op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- goto err;
- }
-
- snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer);
- op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer);
- input.oper = *cur_op;
- TF_AddInput(op_desc, input);
- input.oper = op;
- TF_AddInput(op_desc, input);
- TF_SetAttrType(op_desc, "T", TF_FLOAT);
- TF_SetAttrIntList(op_desc, "strides", strides, 4);
- TF_SetAttrString(op_desc, "padding", "VALID", 5);
- *cur_op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- goto err;
- }
-
- snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer);
- op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
- TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
- dims[0] = params->output_num;
- dims_len = 1;
- biases_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float));
- memcpy(TF_TensorData(biases_tensor), params->biases, params->output_num * sizeof(float));
- TF_SetAttrTensor(op_desc, "value", biases_tensor, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- goto err;
- }
- op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- goto err;
- }
-
- snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer);
- op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer);
- input.oper = *cur_op;
- TF_AddInput(op_desc, input);
- input.oper = op;
- TF_AddInput(op_desc, input);
- TF_SetAttrType(op_desc, "T", TF_FLOAT);
- *cur_op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- goto err;
- }
-
- snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer);
- switch (params->activation){
- case RELU:
- op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer);
- break;
- case TANH:
- op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer);
- break;
- case SIGMOID:
- op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer);
- break;
- default:
- avpriv_report_missing_feature(ctx, "convolutional activation function %d", params->activation);
- return AVERROR(ENOSYS);
- }
- input.oper = *cur_op;
- TF_AddInput(op_desc, input);
- TF_SetAttrType(op_desc, "T", TF_FLOAT);
- *cur_op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- goto err;
- }
-
- return 0;
-err:
- TF_DeleteTensor(kernel_tensor);
- TF_DeleteTensor(biases_tensor);
- av_log(ctx, AV_LOG_ERROR, "Failed to add conv layer %d\n", layer);
- return DNN_GENERIC_ERROR;
-}
-
-static int add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op,
- DepthToSpaceParams *params, const int layer)
-{
- TFContext *ctx = &tf_model->ctx;
- TF_OperationDescription *op_desc;
- TF_Output input;
- char name_buffer[NAME_BUFFER_SIZE];
-
- snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer);
- op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer);
- input.oper = *cur_op;
- input.index = 0;
- TF_AddInput(op_desc, input);
- TF_SetAttrType(op_desc, "T", TF_FLOAT);
- TF_SetAttrInt(op_desc, "block_size", params->block_size);
- *cur_op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- av_log(ctx, AV_LOG_ERROR, "Failed to add depth_to_space to layer %d\n", layer);
- return DNN_GENERIC_ERROR;
- }
-
- return 0;
-}
-
-static int add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
- LayerPadParams *params, const int layer)
-{
- TFContext *ctx = &tf_model->ctx;
- TF_Operation *op;
- TF_Tensor *tensor;
- TF_OperationDescription *op_desc;
- TF_Output input;
- int32_t *pads;
- int64_t pads_shape[] = {4, 2};
-
- char name_buffer[NAME_BUFFER_SIZE];
- snprintf(name_buffer, NAME_BUFFER_SIZE, "pad%d", layer);
-
- op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
- TF_SetAttrType(op_desc, "dtype", TF_INT32);
- tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t));
- pads = (int32_t *)TF_TensorData(tensor);
- pads[0] = params->paddings[0][0];
- pads[1] = params->paddings[0][1];
- pads[2] = params->paddings[1][0];
- pads[3] = params->paddings[1][1];
- pads[4] = params->paddings[2][0];
- pads[5] = params->paddings[2][1];
- pads[6] = params->paddings[3][0];
- pads[7] = params->paddings[3][1];
- TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- TF_DeleteTensor(tensor);
- av_log(ctx, AV_LOG_ERROR, "Failed to set value for pad of layer %d\n", layer);
- return DNN_GENERIC_ERROR;
- }
- op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- TF_DeleteTensor(tensor);
- av_log(ctx, AV_LOG_ERROR, "Failed to add pad to layer %d\n", layer);
- return DNN_GENERIC_ERROR;
- }
-
- op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad");
- input.oper = *cur_op;
- input.index = 0;
- TF_AddInput(op_desc, input);
- input.oper = op;
- TF_AddInput(op_desc, input);
- TF_SetAttrType(op_desc, "T", TF_FLOAT);
- TF_SetAttrType(op_desc, "Tpaddings", TF_INT32);
- TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9);
- *cur_op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- TF_DeleteTensor(tensor);
- av_log(ctx, AV_LOG_ERROR, "Failed to add mirror_pad to layer %d\n", layer);
- return DNN_GENERIC_ERROR;
- }
-
- return 0;
-}
-
-static int add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
- DnnLayerMaximumParams *params, const int layer)
-{
- TFContext *ctx = &tf_model->ctx;
- TF_Operation *op;
- TF_Tensor *tensor;
- TF_OperationDescription *op_desc;
- TF_Output input;
- float *y;
-
- char name_buffer[NAME_BUFFER_SIZE];
- snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer);
-
- op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
- TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
- tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT));
- y = (float *)TF_TensorData(tensor);
- *y = params->val.y;
- TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- TF_DeleteTensor(tensor);
- av_log(ctx, AV_LOG_ERROR, "Failed to set value for maximum/y of layer %d", layer);
- return DNN_GENERIC_ERROR;
- }
- op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- TF_DeleteTensor(tensor);
- av_log(ctx, AV_LOG_ERROR, "Failed to add maximum/y to layer %d\n", layer);
- return DNN_GENERIC_ERROR;
- }
-
- snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer);
- op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer);
- input.oper = *cur_op;
- input.index = 0;
- TF_AddInput(op_desc, input);
- input.oper = op;
- TF_AddInput(op_desc, input);
- TF_SetAttrType(op_desc, "T", TF_FLOAT);
- *cur_op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- TF_DeleteTensor(tensor);
- av_log(ctx, AV_LOG_ERROR, "Failed to add maximum to layer %d\n", layer);
- return DNN_GENERIC_ERROR;
- }
-
- return 0;
-}
-
-static int load_native_model(TFModel *tf_model, const char *model_filename)
-{
- TFContext *ctx = &tf_model->ctx;
- int32_t layer;
- TF_OperationDescription *op_desc;
- TF_Operation *op;
- TF_Operation *transpose_op;
- TF_Tensor *tensor = NULL;
- TF_Output input;
- int32_t *transpose_perm;
- int64_t transpose_perm_shape[] = {4};
- int64_t input_shape[] = {1, -1, -1, -1};
- int layer_add_res;
- DNNModel *model = NULL;
- NativeModel *native_model;
-
- model = ff_dnn_load_model_native(model_filename, DFT_PROCESS_FRAME, NULL, NULL);
- if (!model){
- av_log(ctx, AV_LOG_ERROR, "Failed to load native model\n");
- return AVERROR(EINVAL);
- }
-
- native_model = model->model;
- tf_model->graph = TF_NewGraph();
- tf_model->status = TF_NewStatus();
-
-#define CLEANUP_ON_ERROR(tf_model) \
- { \
- TF_DeleteTensor(tensor); \
- TF_DeleteGraph(tf_model->graph); \
- TF_DeleteStatus(tf_model->status); \
- av_log(ctx, AV_LOG_ERROR, "Failed to set value or add operator to layer\n"); \
- return DNN_GENERIC_ERROR; \
- }
-
- op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x");
- TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
- TF_SetAttrShape(op_desc, "shape", input_shape, 4);
- op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- CLEANUP_ON_ERROR(tf_model);
- }
-
- op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm");
- TF_SetAttrType(op_desc, "dtype", TF_INT32);
- tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t));
- transpose_perm = (int32_t *)TF_TensorData(tensor);
- transpose_perm[0] = 1;
- transpose_perm[1] = 2;
- transpose_perm[2] = 3;
- transpose_perm[3] = 0;
- TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- CLEANUP_ON_ERROR(tf_model);
- }
- transpose_op = TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- CLEANUP_ON_ERROR(tf_model);
- }
-
- for (layer = 0; layer < native_model->layers_num; ++layer){
- switch (native_model->layers[layer].type){
- case DLT_INPUT:
- layer_add_res = 0;
- break;
- case DLT_CONV2D:
- layer_add_res = add_conv_layer(tf_model, transpose_op, &op,
- (ConvolutionalParams *)native_model->layers[layer].params, layer);
- break;
- case DLT_DEPTH_TO_SPACE:
- layer_add_res = add_depth_to_space_layer(tf_model, &op,
- (DepthToSpaceParams *)native_model->layers[layer].params, layer);
- break;
- case DLT_MIRROR_PAD:
- layer_add_res = add_pad_layer(tf_model, &op,
- (LayerPadParams *)native_model->layers[layer].params, layer);
- break;
- case DLT_MAXIMUM:
- layer_add_res = add_maximum_layer(tf_model, &op,
- (DnnLayerMaximumParams *)native_model->layers[layer].params, layer);
- break;
- default:
- CLEANUP_ON_ERROR(tf_model);
- }
-
- if (layer_add_res != 0){
- CLEANUP_ON_ERROR(tf_model);
- }
- }
-
- op_desc = TF_NewOperation(tf_model->graph, "Identity", "y");
- input.oper = op;
- input.index = 0;
- TF_AddInput(op_desc, input);
- TF_FinishOperation(op_desc, tf_model->status);
- if (TF_GetCode(tf_model->status) != TF_OK){
- CLEANUP_ON_ERROR(tf_model);
- }
-
- ff_dnn_free_model_native(&model);
-
- return 0;
-}
-
DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
{
DNNModel *model = NULL;
@@ -867,9 +506,8 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
}
if (load_tf_model(tf_model, model_filename) != 0){
- if (load_native_model(tf_model, model_filename) != 0){
- goto err;
- }
+ av_log(ctx, AV_LOG_ERROR, "Failed to load TensorFlow model: \"%s\"\n", model_filename);
+ goto err;
}
if (ctx->options.nireq <= 0) {
diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h
index ef8d7ae66f..6b64a2b55a 100644
--- a/libavfilter/dnn_interface.h
+++ b/libavfilter/dnn_interface.h
@@ -32,7 +32,7 @@
#define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!')
-typedef enum {DNN_NATIVE, DNN_TF, DNN_OV} DNNBackendType;
+typedef enum {DNN_TF = 1, DNN_OV} DNNBackendType;
typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
diff --git a/libavfilter/tests/dnn-layer-avgpool.c b/libavfilter/tests/dnn-layer-avgpool.c
deleted file mode 100644
index 4a925ea22a..0000000000
--- a/libavfilter/tests/dnn-layer-avgpool.c
+++ /dev/null
@@ -1,197 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <stdio.h>
-#include "libavfilter/dnn/dnn_backend_native_layer_avgpool.h"
-
-#define EPSON 0.00001
-
-static int test_with_same(void)
-{
- // the input data and expected data are generated with below python code.
- /*
- import tensorflow as tf
- import numpy as np
-
- x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- y = tf.layers.average_pooling2d(x, pool_size=[2,2], strides=[1,1], padding='VALID')
- data = np.random.rand(1, 5, 6, 3);
-
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
-
- output = sess.run(y, feed_dict={x: data})
-
- print("input:")
- print(data.shape)
- print(list(data.flatten()))
-
- print("output:")
- print(output.shape)
- print(list(output.flatten()))
- */
-
- AvgPoolParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*5*6*3] = {
- 0.7461309859908424, 0.7567538372797069, 0.07662743569678687, 0.8882112610336333, 0.9720443314026668, 0.3337200343220823, 0.4421032129780248,
- 0.14940809044964876, 0.6773177061961277, 0.9778844630669781, 0.6522650522626998, 0.0317651530878591, 0.31259897552911364, 0.6235936821891896,
- 0.40016094349542775, 0.4599222930032276, 0.7893807222960093, 0.8475986363538283, 0.5058802717647394, 0.7827005363222633, 0.3032188123727916,
- 0.8983728631302361, 0.20622408444965523, 0.22966072303869878, 0.09535751273161308, 0.8760709100995375, 0.9982324154558745, 0.7904595468621013,
- 0.13883671508879347, 0.9332751439533138, 0.0010861680752152214, 0.3607210449251048, 0.6600652759586171, 0.7629572058138805, 0.29441975810476106,
- 0.2683471432889405, 0.22574580829831536, 0.8893251976212904, 0.3907737043801005, 0.6421829842863968, 0.6670373870457297, 0.9383850793160277,
- 0.4120458907436003, 0.3589847212711481, 0.48047736550128983, 0.6428192648418949, 0.0313661686292348, 0.429357100401472, 0.5123413386514056,
- 0.8492446404097114, 0.9045286128486804, 0.8123708563814285, 0.3943245008451698, 0.9576713003177785, 0.5985610965938726, 0.9350833279543561,
- 0.8010079897491659, 0.45882114217642866, 0.35275037908941487, 0.4555844661432271, 0.12352455940255314, 0.37801756635035544, 0.2824056214573083,
- 0.6229462823245029, 0.7235305681391472, 0.5408259266122064, 0.12142224381781208, 0.34431198802873686, 0.7112823816321276, 0.6307144385115417,
- 0.8136734589018082, 0.842095618140585, 0.8602767724004784, 0.6649236853766185, 0.5184782829419623, 0.9119607270982825, 0.3084111974561645,
- 0.39460705638161364, 0.17710447526170836, 0.1715485945814199, 0.17277563576521882, 0.40188232428735704, 0.22847985411491878, 0.4135361701550696,
- 0.24621846601980057, 0.6576588108454774, 0.6063336087333997, 0.6452342242996931, 0.7071689702737508, 0.1973416063225648
- };
- float expected_output[] = {
- 0.75964886, 0.6794307, 0.23580676, 0.5810112, 0.5509369, 0.55973274, 0.5764512, 0.45414522, 0.6601476, 0.52050734, 0.44385415,
- 0.50631666, 0.38414115, 0.5170288, 0.544043, 0.61143976, 0.5419003, 0.5579729, 0.5680455, 0.6363218, 0.4655096, 0.51198983,
- 0.5270792, 0.66168886, 0.48517057, 0.3513146, 0.7103355, 0.48667657, 0.34504217, 0.7318065, 0.5221889, 0.4746775, 0.69765306,
- 0.78766406, 0.34437215, 0.6130092, 0.48132777, 0.7110491, 0.6464378, 0.40914366, 0.4391975, 0.5392131, 0.45033398, 0.37297475,
- 0.43326652, 0.4748823, 0.48711336, 0.64649844, 0.51921225, 0.60038865, 0.8538945, 0.7215426, 0.60399896, 0.89988345, 0.707405,
- 0.5652921, 0.54241943, 0.41785273, 0.30268195, 0.3263432, 0.3313644, 0.37539417, 0.35238582, 0.34811732, 0.48849532, 0.56799453,
- 0.41089734, 0.63070333, 0.5892633, 0.6379743, 0.7604212, 0.5197186, 0.88611877, 0.48666745, 0.45654267, 0.5445326, 0.2399799,
- 0.28369135, 0.28949338, 0.20001422, 0.2931559, 0.3240504, 0.44306934, 0.5099349, 0.44572634, 0.68241394, 0.40183762, 0.6452342,
- 0.707169, 0.1973416
- };
- float *output;
-
- params.strides = 1;
- params.kernel_size = 2;
- params.padding_method = SAME;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 5;
- operands[0].dims[2] = 6;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_avg_pool(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(expected_output) / sizeof(float); ++i) {
- if (fabs(output[i] - expected_output[i]) > EPSON) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-}
-
-static int test_with_valid(void)
-{
- // the input data and expected data are generated with below python code.
- /*
- import tensorflow as tf
- import numpy as np
-
- x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- y = tf.layers.average_pooling2d(x, pool_size=[2,2], strides=[1,1], padding='VALID')
- data = np.random.rand(1, 5, 6, 3);
-
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
-
- output = sess.run(y, feed_dict={x: data})
-
- print("input:")
- print(data.shape)
- print(list(data.flatten()))
-
- print("output:")
- print(output.shape)
- print(list(output.flatten()))
- */
-
- AvgPoolParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*5*6*3] = {
- 0.5046741692941682, 0.9273653202485155, 0.8193878359859937, 0.1904059431360905, 0.8664919633253656, 0.7484625128286059, 0.984534184632278,
- 0.31900804890072254, 0.3259426099940872, 0.05388974903570376, 0.7356610151331133, 0.46710858713311965, 0.718553768817036, 0.062478421853278676,
- 0.7813224786584609, 0.4826837517658389, 0.9748095400220147, 0.8078547703898341, 0.11976750668368585, 0.8713586777195065, 0.41447321551284355,
- 0.9818788239089807, 0.4335715767584073, 0.4059793452147419, 0.3677205907204525, 0.47919995923571, 0.8341395256258882, 0.7059726374074609,
- 0.5478504551919791, 0.8622900484790175, 0.8343709722511167, 0.05089827275068537, 0.6465283980840416, 0.544539116066677, 0.39812057257884337,
- 0.9578115576866337, 0.25012888117580145, 0.579333516024662, 0.5556732133051457, 0.6119862111181243, 0.0018736758772316398, 0.9795490254040474,
- 0.4488085008883018, 0.28947489777011737, 0.4834108668633247, 0.9280490084385024, 0.9895821458049648, 0.31777618554697606, 0.42679693258977847,
- 0.74447844466923, 0.9752225305081498, 0.17564130841849335, 0.22382692067314292, 0.009602884447469373, 0.5144884415025782, 0.031622570708844555,
- 0.8277532752502512, 0.4111593210409763, 0.5272084646575664, 0.28856508082905297, 0.11317726946036655, 0.7203328275540273, 0.8310055019972384,
- 0.8535951508685228, 0.40230347305233227, 0.2819703265132867, 0.6243143957791139, 0.7512463693822311, 0.7523056340495644, 0.8838077258040928,
- 0.5472240664033092, 0.2550538284454935, 0.5560317774456567, 0.8966847087518931, 0.6728358284165321, 0.30361297147530875, 0.464343925441822,
- 0.34507695659461224, 0.6333175615390685, 0.26661369038523497, 0.9926748632253231, 0.9994267301382666, 0.8684917986974414, 0.3598754806113009,
- 0.49550268625464666, 0.03652458679973214, 0.13469081713137177, 0.4579424049273835, 0.48641107969110353, 0.9670250266945365
- };
- float expected_output[1*4*5*3] = {
- 0.44918162, 0.7746969, 0.5970757, 0.63113487, 0.5245679, 0.578631, 0.52802926, 0.52042985, 0.6223702, 0.57819676, 0.34922206,
- 0.6893124, 0.64503694, 0.37157673, 0.7983793, 0.49094033, 0.47153437, 0.5889187, 0.6025985, 0.30103004, 0.6757697, 0.6126377,
- 0.5765268, 0.62440413, 0.7237974, 0.5832023, 0.7004543, 0.49533707, 0.35433105, 0.6472913, 0.44694072, 0.28500956, 0.6628852,
- 0.39628282, 0.38472247, 0.6456326, 0.58590746, 0.60042334, 0.47854072, 0.7081889, 0.7219026, 0.5818187, 0.5276401, 0.56669396,
- 0.49804622, 0.4463231, 0.4799649, 0.5335578, 0.36531678, 0.4946247, 0.6143306, 0.6498792, 0.5644355, 0.6163815, 0.7432098,
- 0.5146416, 0.38221055, 0.6153918, 0.45535153, 0.5272688
- };
- float *output;
-
- params.strides = 1;
- params.kernel_size = 2;
- params.padding_method = VALID;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 5;
- operands[0].dims[2] = 6;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_avg_pool(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(expected_output) / sizeof(float); ++i) {
- if (fabs(output[i] - expected_output[i]) > EPSON) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-}
-
-int main(int argc, char **argv)
-{
- if (test_with_same())
- return 1;
- if (test_with_valid())
- return 1;
-
- return 0;
-}
diff --git a/libavfilter/tests/dnn-layer-conv2d.c b/libavfilter/tests/dnn-layer-conv2d.c
deleted file mode 100644
index 5ee60eeaf0..0000000000
--- a/libavfilter/tests/dnn-layer-conv2d.c
+++ /dev/null
@@ -1,248 +0,0 @@
-/*
- * Copyright (c) 2019 Guo Yejun
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <stdio.h>
-#include <string.h>
-#include <math.h>
-#include "libavfilter/dnn/dnn_backend_native_layer_conv2d.h"
-
-#define EPSON 0.00001
-
-static int test_with_same_dilate(void)
-{
- // the input data and expected data are generated with below python code.
- /*
- x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='same', dilation_rate=(2, 2), bias_initializer=tf.keras.initializers.he_normal())
- data = np.random.rand(1, 5, 6, 3);
-
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
-
- weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()])
- kernel = weights['conv2d/kernel:0']
- kernel = np.transpose(kernel, [3, 0, 1, 2])
- print("kernel:")
- print(kernel.shape)
- print(list(kernel.flatten()))
-
- bias = weights['conv2d/bias:0']
- print("bias:")
- print(bias.shape)
- print(list(bias.flatten()))
-
- output = sess.run(y, feed_dict={x: data})
-
- print("input:")
- print(data.shape)
- print(list(data.flatten()))
-
- print("output:")
- print(output.shape)
- print(list(output.flatten()))
- */
-
- ConvolutionalParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*5*6*3] = {
- 0.7012556460308194, 0.4233847954643357, 0.19515900664313612, 0.16343083004926495, 0.5758261611052848, 0.9510767434014871, 0.11014085055947687,
- 0.906327053637727, 0.8136794715542507, 0.45371764543639526, 0.5768443343523952, 0.19543668786046986, 0.15648326047898609, 0.2099500241141279,
- 0.17658777090552413, 0.059335724777169196, 0.1729991838469117, 0.8150514704819208, 0.4435535466703049, 0.3752188477566878, 0.749936650421431,
- 0.6823494635284907, 0.10776389679424747, 0.34247481674596836, 0.5147867256244629, 0.9063709728129032, 0.12423605800856818, 0.6064872945412728,
- 0.5891681538551459, 0.9865836236466314, 0.9002163879294677, 0.003968273184274618, 0.8628374809643967, 0.1327176268279583, 0.8449799925703798,
- 0.1937671869354366, 0.41524410152707425, 0.02038786604756837, 0.49792466069597496, 0.8881874553848784, 0.9683921035597336, 0.4122972568010813,
- 0.843553550993252, 0.9588482762501964, 0.5190350762645546, 0.4283584264145317, 0.09781496073714646, 0.9501058833776156, 0.8665541760152776,
- 0.31669272550095806, 0.07133074675453632, 0.606438007334886, 0.7007157020538224, 0.4827996264130444, 0.5167615606392761, 0.6385043039312651,
- 0.23069664707810555, 0.058233497329354456, 0.06323892961591071, 0.24816458893245974, 0.8646369065257812, 0.24742185893094837, 0.09991225948167437,
- 0.625700606979606, 0.7678541502111257, 0.6215834594679912, 0.5623003956582483, 0.07389123942681242, 0.7659100715711249, 0.486061471642225,
- 0.9947455699829012, 0.9094911797643259, 0.7644355876253265, 0.05384315321492239, 0.13565394382783613, 0.9810628204953316, 0.007386389078887889,
- 0.226182754156241, 0.2609021390764772, 0.24182802076928933, 0.13264782451941648, 0.2035816485767682, 0.005504188177612557, 0.7014619934040155,
- 0.956215988391991, 0.5670398541013633, 0.9809764721750784, 0.6886338100487461, 0.5758152317218274, 0.7137823176776179
- };
- float expected_output[1*5*6*2] = {
- -0.9480655, -0.7169147, -0.9404794, -0.5567385, -0.8991124, -0.8306558, -0.94487447, -0.8932543, -0.88238764, -0.7301602,
- -0.8974813, -0.7026703, -0.8858988, -0.53203243, -0.92881465, -0.5648504, -0.8871471, -0.7000097, -0.91754407, -0.79684794,
- -0.760465, -0.117928326, -0.88302773, -0.8975289, -0.70615053, 0.19231977, -0.8318776, -0.386184, -0.80698484, -0.8556624,
- -0.7336671, -0.6168619, -0.7658234, -0.63449603, -0.73314047, -0.87502456, -0.58158904, -0.4184259, -0.52618927, -0.13613208,
- -0.5093187, -0.21027721, -0.39455596, -0.44507834, -0.22269244, -0.73400885, -0.77655095, -0.74408925, -0.57313335, -0.15333457,
- -0.74620694, -0.34858236, -0.42586932, -0.5240488, 0.1634339, -0.2447881, -0.57927346, -0.62732303, -0.82287043, -0.8474058
- };
- float *output;
- float kernel[2*3*3*3] = {
- 0.26025516, 0.16536498, -0.24351254, 0.33892477, -0.34005195, 0.35202783, 0.34056443, 0.01422739, 0.13799345, 0.29489166,
- 0.2781723, 0.178585, 0.22122234, 0.044115514, 0.13134438, 0.31705368, 0.22527462, -0.021323413, 0.115134746, -0.18216397,
- -0.21197563, -0.027848959, -0.01704529, -0.12401503, -0.23415318, -0.12661739, -0.35338148, 0.20049328, -0.076153606,
- -0.23642601, -0.3125769, -0.025851756, -0.30006272, 0.050762743, 0.32003498, 0.3052225, -0.0017385483, 0.25337684, -0.25664508,
- 0.27846587, -0.3112659, 0.2066065, 0.31499845, 0.113178134, 0.09449363, -0.11828774, -0.12671001, -0.36259216, 0.2710235,
- -0.19676702, 0.023612618, -0.2596915, -0.34949252, -0.108270735
- };
- float bias[2] = { -1.6574852, -0.72915393 };
-
- NativeContext ctx;
- ctx.class = NULL;
- ctx.options.conv2d_threads = 1;
-
- params.activation = TANH;
- params.has_bias = 1;
- params.biases = bias;
- params.dilation = 2;
- params.input_num = 3;
- params.kernel = kernel;
- params.kernel_size = 3;
- params.output_num = 2;
- params.padding_method = SAME;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 5;
- operands[0].dims[2] = 6;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_conv2d(operands, input_indexes, 1, ¶ms, &ctx);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
- if (fabs(output[i] - expected_output[i]) > EPSON) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-}
-
-static int test_with_valid(void)
-{
- // the input data and expected data are generated with below python code.
- /*
- x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='valid', bias_initializer=tf.keras.initializers.he_normal())
- data = np.random.rand(1, 5, 6, 3);
-
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
-
- weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()])
- kernel = weights['conv2d/kernel:0']
- kernel = np.transpose(kernel, [3, 0, 1, 2])
- print("kernel:")
- print(kernel.shape)
- print(list(kernel.flatten()))
-
- bias = weights['conv2d/bias:0']
- print("bias:")
- print(bias.shape)
- print(list(bias.flatten()))
-
- output = sess.run(y, feed_dict={x: data})
-
- print("input:")
- print(data.shape)
- print(list(data.flatten()))
-
- print("output:")
- print(output.shape)
- print(list(output.flatten()))
- */
-
- ConvolutionalParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*5*6*3] = {
- 0.26126657468269665, 0.42762216215337556, 0.7466274030131497, 0.802550266787863, 0.3709323443076644, 0.5919817068197668, 0.49274512279324967,
- 0.7170132295090351, 0.0911793215410649, 0.5134213878288361, 0.670132600785118, 0.49417034512633484, 0.03887389460089885, 0.436785102836845,
- 0.1490231658611978, 0.6413606121498127, 0.8595987991375995, 0.9132593077586231, 0.7075959004873255, 0.17754995944845464, 0.5212507214937141,
- 0.35379732738215475, 0.25205107358505296, 0.3928792840544273, 0.09485294189485782, 0.8685115437448666, 0.6489046799288605, 0.509253797582924,
- 0.8993255536791972, 0.18740056466602373, 0.34237617336313986, 0.3871438962989183, 0.1488532571774911, 0.5187002331293636, 0.8137098818752955,
- 0.521761863717401, 0.4622312310118274, 0.29038411334638825, 0.16194915718170566, 0.5175999923925211, 0.8852230040101133, 0.0218263385047206,
- 0.08482355352852367, 0.3463638568376264, 0.28627127120619733, 0.9553293378948409, 0.4803391055970835, 0.841635695030805, 0.3556828280031952,
- 0.06778527221541808, 0.28193560357091596, 0.8399957619031576, 0.03305536359456385, 0.6625039162109645, 0.9300552020023897, 0.8551529138204146,
- 0.6133216915522418, 0.222427800857393, 0.1315422686800336, 0.6189144989185527, 0.5346184916866876, 0.8348888624532548, 0.6544834567840291,
- 0.2844062293389934, 0.28780026600883324, 0.5372272015684924, 0.6250226011503823, 0.28119106062279453, 0.49655812908420094, 0.6451488959145951,
- 0.7362580606834843, 0.44815578616664087, 0.6454760235835586, 0.6794062414265861, 0.045378883014935756, 0.9008388543865096, 0.7949752851269782,
- 0.4179928876222264, 0.28733419007048644, 0.996902319501908, 0.5690851338677467, 0.9511814013279738, 0.025323788678181636, 0.5594359732604794,
- 0.1213732595086251, 0.7172624313368294, 0.6759328959074691, 0.07252138454885071, 0.17557735158403442, 0.5988895455048769
- };
- float expected_output[1*3*4*2] = {
- -0.556947, -0.42143887, -0.092070885, 0.27404794, -0.41886684, 0.0862887, -0.25001016, -0.342721, 0.020730592, 0.04016919, -0.69839877,
- -0.06136704, 0.14186388, -0.11655602, -0.23489095, -0.3845829, -0.19017771, 0.1595885, -0.18308741, -0.3071209, -0.5848686, -0.22509028,
- -0.6023201, -0.14448485
- };
- float *output;
- float kernel[2*3*3*3] = {
- -0.25291282, 0.22402048, 0.028642118, -0.14615723, -0.27362752, -0.34801802, -0.2759148, 0.19594926, -0.25029412, 0.34606284, 0.10376671,
- -0.1015394, 0.23616093, 0.2134214, 0.35285157, 0.05893758, 0.0024731457, -0.17143056, 0.35758412, 0.2186206, -0.28384736, -0.21206513,
- -0.20871592, 0.27070445, 0.25878823, 0.11136332, -0.33737376, 0.08353335, -0.34290665, 0.041805506, -0.09738535, 0.3284936, -0.16838405,
- -0.032494456, -0.29193437, 0.033259362, -0.09272635, -0.2802651, -0.28648436, 0.3542878, 0.2432127, -0.24551713, 0.27813476, 0.21024024,
- -0.013690501, -0.1350077, -0.07826337, -0.34563828, 0.3220685, -0.07571727, 0.19420576, 0.20783454, 0.18738335, 0.16672492
- };
- float bias[2] = { -0.4773722, -0.19620377 };
-
- NativeContext ctx;
- ctx.class = NULL;
- ctx.options.conv2d_threads = 1;
-
- params.activation = TANH;
- params.has_bias = 1;
- params.biases = bias;
- params.dilation = 1;
- params.input_num = 3;
- params.kernel = kernel;
- params.kernel_size = 3;
- params.output_num = 2;
- params.padding_method = VALID;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 5;
- operands[0].dims[2] = 6;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_conv2d(operands, input_indexes, 1, ¶ms, &ctx);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
- if (fabs(output[i] - expected_output[i]) > EPSON) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-}
-
-int main(int argc, char **argv)
-{
- if (test_with_valid())
- return 1;
- if (test_with_same_dilate())
- return 1;
-
- return 0;
-}
diff --git a/libavfilter/tests/dnn-layer-dense.c b/libavfilter/tests/dnn-layer-dense.c
deleted file mode 100644
index 696f7505e5..0000000000
--- a/libavfilter/tests/dnn-layer-dense.c
+++ /dev/null
@@ -1,131 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <stdio.h>
-#include <string.h>
-#include <math.h>
-#include "libavfilter/dnn/dnn_backend_native_layer_dense.h"
-
-#define EPSON 0.00001
-
-static int test(void)
-{
- // the input data and expected data are generated with below python code.
- /*
- x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- y = tf.layers.dense(input_x, 3, activation=tf.nn.sigmoid, bias_initializer=tf.keras.initializers.he_normal())
- data = np.random.rand(1, 5, 6, 3);
-
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
-
- weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()])
- kernel = weights['dense/kernel:0']
- kernel = np.transpose(kernel, [1, 0])
- print("kernel:")
- print(kernel.shape)
- print(list(kernel.flatten()))
-
- bias = weights['dense/bias:0']
- print("bias:")
- print(bias.shape)
- print(list(bias.flatten()))
-
- output = sess.run(y, feed_dict={x: data})
-
- print("input:")
- print(data.shape)
- print(list(data.flatten()))
-
- print("output:")
- print(output.shape)
- print(list(output.flatten()))
- */
-
- DenseParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*5*6*3] = {
- 0.5552418686576308, 0.20653189262022464, 0.31115120939398877, 0.5897014433221428, 0.37340078861060655, 0.6470921693941893, 0.8039950367872679, 0.8762700891949274,
- 0.6556655583829558, 0.5911096107039339, 0.18640250865290997, 0.2803248779238966, 0.31586613136402053, 0.9447300740056483, 0.9443980824873418, 0.8158851991115941,
- 0.5631010340387631, 0.9407402251929046, 0.6485434876551682, 0.5631376966470001, 0.17581924875609634, 0.7033802439103178, 0.04802402495561675, 0.9183681450194972,
- 0.46059317944364, 0.07964160481596883, 0.871787076270302, 0.973743142324361, 0.15923146943258415, 0.8212946080584571, 0.5415954459227064, 0.9552813822803975,
- 0.4908552668172057, 0.33723691635292274, 0.46588057864910026, 0.8994239961321776, 0.09845220457674186, 0.1713400292123486, 0.39570294912818826, 0.08018956486392803,
- 0.5290478278169032, 0.7141906125920976, 0.0320878067840098, 0.6412406575332606, 0.0075712007102423096, 0.7150828462386156, 0.1311989216968138, 0.4706847944253756,
- 0.5447610794883336, 0.3430923933318001, 0.536082357943209, 0.4371629342483694, 0.40227962985019927, 0.3553806249465469, 0.031806622424259245, 0.7053916426174,
- 0.3261570237309813, 0.419500213292063, 0.3155691223480851, 0.05664028113178088, 0.3636491555914486, 0.8502419746667123, 0.9836596530684955, 0.1628681802975801,
- 0.09410832912479894, 0.28407218939480294, 0.7983417928813697, 0.24132158596506748, 0.8154729498062224, 0.29173768373895637, 0.13407102008052096, 0.18705786678800385,
- 0.7167943621295573, 0.09222004247174376, 0.2319220738766018, 0.17708964382285064, 0.1391440370249517, 0.3254088083499256, 0.4013916894718289, 0.4819742663322323,
- 0.15080103744648077, 0.9302407847555013, 0.9397597961319524, 0.5719200825550793, 0.9538938024682824, 0.9583882089203861, 0.5168861091262276, 0.1926396841842669,
- 0.6781176744337578, 0.719366447288566
- };
- float expected_output[1*5*6*3] = {
- -0.3921688, -0.9243112, -0.29659146, -0.64000785, -0.9466343, -0.62125254, -0.71759033, -0.9171336, -0.735589, -0.34365994,
- -0.92100817, -0.23903961, -0.8962277, -0.9521279, -0.90962386, -0.7488303, -0.9563761, -0.7701762, -0.40800542, -0.87684774,
- -0.3339763, -0.6354543, -0.97068924, -0.6246325, -0.6992075, -0.9706726, -0.6818918, -0.51864433, -0.9592881, -0.51187396,
- -0.7423632, -0.89911884, -0.7457824, -0.82009757, -0.96402895, -0.8235518, -0.61980766, -0.94494647, -0.5410502, -0.8281218,
- -0.95508635, -0.8201453, -0.5937325, -0.8679507, -0.500767, -0.39430764, -0.93967676, -0.32183182, -0.58913624, -0.939717,
- -0.55179894, -0.55004454, -0.9214453, -0.4889004, -0.75294703, -0.9118363, -0.7200309, -0.3248641, -0.8878874, -0.18977344,
- -0.8873837, -0.9571257, -0.90145934, -0.50521654, -0.93739635, -0.39051685, -0.61143184, -0.9591179, -0.605999, -0.40008977,
- -0.92219675, -0.26732883, -0.19607787, -0.9172511, -0.07068595, -0.5409857, -0.9387041, -0.44181606, -0.4705004, -0.8899935,
- -0.37997037, -0.66105115, -0.89754754, -0.68141997, -0.6324047, -0.886776, -0.65066385, -0.8334821, -0.94801456, -0.83297
- };
- float *output;
- float kernel[3*3] = {
- 0.56611896, -0.5144603, -0.82600045, 0.19219112, 0.3835776, -0.7475352, 0.5209291, -0.6301091, -0.99442935};
- float bias[3] = {-0.3654299, -1.5711838, -0.15546428};
-
- params.activation = TANH;
- params.has_bias = 1;
- params.biases = bias;
- params.input_num = 3;
- params.kernel = kernel;
- params.output_num = 3;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 5;
- operands[0].dims[2] = 6;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_dense(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
- if (fabs(output[i] - expected_output[i]) > EPSON) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-}
-
-int main(int argc, char **argv)
-{
- if (test())
- return 1;
-
- return 0;
-}
diff --git a/libavfilter/tests/dnn-layer-depth2space.c b/libavfilter/tests/dnn-layer-depth2space.c
deleted file mode 100644
index 958247e675..0000000000
--- a/libavfilter/tests/dnn-layer-depth2space.c
+++ /dev/null
@@ -1,102 +0,0 @@
-/*
- * Copyright (c) 2019 Guo Yejun
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <stdio.h>
-#include <string.h>
-#include <math.h>
-#include "libavfilter/dnn/dnn_backend_native.h"
-#include "libavfilter/dnn/dnn_backend_native_layer_depth2space.h"
-
-#define EPSON 0.00001
-
-static int test(void)
-{
- // the input data and expected data are generated with below python code.
- /*
- x = tf.placeholder(tf.float32, shape=[1, None, None, 4])
- y = tf.depth_to_space(x, 2)
- data = np.random.rand(1, 5, 3, 4);
-
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
-
- output = sess.run(y, feed_dict={x: data})
-
- print("input:")
- print(data.shape)
- print(list(data.flatten()))
-
- print("output:")
- print(output.shape)
- print(list(output.flatten()))
- */
-
- DepthToSpaceParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*5*3*4] = {
- 0.09771065121566602, 0.6336807372403175, 0.5142416549709786, 0.8027206567330333, 0.2154276025069397, 0.12112878462616772, 0.913936596765778,
- 0.38881443647542646, 0.5850447615898835, 0.9311499327398275, 0.3613660929428246, 0.5420722002125493, 0.6002131190230359, 0.44800665702299525,
- 0.7271322557896777, 0.3869293511885826, 0.5144404769364138, 0.6910844856987723, 0.6142102742269762, 0.6249991371621018, 0.45663376215836626,
- 0.19523477129943423, 0.2483895888532045, 0.64326768256278, 0.5485877602998981, 0.45442067849873546, 0.529374943304256, 0.30439850391811885,
- 0.11961343361340993, 0.2909643484561082, 0.9810970344127848, 0.8886928489786549, 0.6112237084436409, 0.8852482695156674, 0.9110868043114374,
- 0.21242780027585217, 0.7101536973207572, 0.9709717457443375, 0.2702666770969332, 0.7718295953780221, 0.3957005164588574, 0.24383544252475453,
- 0.040143453532367035, 0.26358051835323115, 0.013130251443791319, 0.3016550481482074, 0.03582340459943956, 0.718025513612361, 0.09844204177633753,
- 0.04433767496953056, 0.6221895044119757, 0.6190414032940228, 0.8963550834625371, 0.5642449700064629, 0.2482982014723497, 0.17824909294583013,
- 0.024401882408643272, 0.21742800875253465, 0.6794724473181843, 0.4814830479242237
- };
- float expected_output[1*10*6*1] = {
- 0.097710654, 0.63368076, 0.2154276, 0.12112878, 0.58504474, 0.93114996, 0.51424164, 0.80272067, 0.9139366, 0.38881445,
- 0.3613661, 0.5420722, 0.6002131, 0.44800666, 0.5144405, 0.6910845, 0.45663378, 0.19523478, 0.72713226, 0.38692936,
- 0.61421025, 0.62499917, 0.24838959, 0.6432677, 0.54858774, 0.4544207, 0.11961343, 0.29096434, 0.6112237, 0.88524824,
- 0.52937496, 0.3043985, 0.98109704, 0.88869286, 0.9110868, 0.2124278, 0.7101537, 0.97097176, 0.3957005, 0.24383545,
- 0.013130251, 0.30165505, 0.27026668, 0.7718296, 0.040143453, 0.26358053, 0.035823405, 0.7180255, 0.09844204,
- 0.044337675, 0.8963551, 0.564245, 0.024401883, 0.21742801, 0.6221895, 0.6190414, 0.2482982, 0.17824909, 0.67947245, 0.48148304
- };
- float *output;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 5;
- operands[0].dims[2] = 3;
- operands[0].dims[3] = 4;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- params.block_size = 2;
- ff_dnn_execute_layer_depth2space(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
- if (fabs(output[i] - expected_output[i]) > EPSON) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-}
-
-int main(int argc, char **argv)
-{
- return test();
-}
diff --git a/libavfilter/tests/dnn-layer-mathbinary.c b/libavfilter/tests/dnn-layer-mathbinary.c
deleted file mode 100644
index 2e41dc1ae7..0000000000
--- a/libavfilter/tests/dnn-layer-mathbinary.c
+++ /dev/null
@@ -1,214 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <stdio.h>
-#include <string.h>
-#include <math.h>
-#include "libavfilter/dnn/dnn_backend_native_layer_mathbinary.h"
-#include "libavutil/avassert.h"
-
-#define EPSON 0.00005
-
-static float get_expected(float f1, float f2, DNNMathBinaryOperation op)
-{
- switch (op)
- {
- case DMBO_SUB:
- return f1 - f2;
- case DMBO_ADD:
- return f1 + f2;
- case DMBO_MUL:
- return f1 * f2;
- case DMBO_REALDIV:
- return f1 / f2;
- case DMBO_MINIMUM:
- return (f1 < f2) ? f1 : f2;
- case DMBO_FLOORMOD:
- return (float)((int)(f1) % (int)(f2));
- default:
- av_assert0(!"not supported yet");
- return 0.f;
- }
-}
-
-static int test_broadcast_input0(DNNMathBinaryOperation op)
-{
- DnnLayerMathBinaryParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*1*2*3] = {
- -3, 2.5, 2, -2.1, 7.8, 100
- };
- float *output;
-
- params.bin_op = op;
- params.input0_broadcast = 1;
- params.input1_broadcast = 0;
- params.v = 7.28;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 1;
- operands[0].dims[2] = 2;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_math_binary(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(input) / sizeof(float); i++) {
- float expected_output = get_expected(params.v, input[i], op);
- if (fabs(output[i] - expected_output) > EPSON) {
- printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n",
- op, i, output[i], expected_output, __FILE__, __LINE__);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-}
-
-static int test_broadcast_input1(DNNMathBinaryOperation op)
-{
- DnnLayerMathBinaryParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*1*2*3] = {
- -3, 2.5, 2, -2.1, 7.8, 100
- };
- float *output;
-
- params.bin_op = op;
- params.input0_broadcast = 0;
- params.input1_broadcast = 1;
- params.v = 7.28;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 1;
- operands[0].dims[2] = 2;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_math_binary(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(input) / sizeof(float); i++) {
- float expected_output = get_expected(input[i], params.v, op);
- if (fabs(output[i] - expected_output) > EPSON) {
- printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n",
- op, i, output[i], expected_output, __FILE__, __LINE__);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-}
-
-static int test_no_broadcast(DNNMathBinaryOperation op)
-{
- DnnLayerMathBinaryParams params;
- DnnOperand operands[3];
- int32_t input_indexes[2];
- float input0[1*1*2*3] = {
- -3, 2.5, 2, -2.1, 7.8, 100
- };
- float input1[1*1*2*3] = {
- -1, 2, 3, -21, 8, 10.0
- };
- float *output;
-
- params.bin_op = op;
- params.input0_broadcast = 0;
- params.input1_broadcast = 0;
-
- operands[0].data = input0;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 1;
- operands[0].dims[2] = 2;
- operands[0].dims[3] = 3;
- operands[1].data = input1;
- operands[1].dims[0] = 1;
- operands[1].dims[1] = 1;
- operands[1].dims[2] = 2;
- operands[1].dims[3] = 3;
- operands[2].data = NULL;
-
- input_indexes[0] = 0;
- input_indexes[1] = 1;
- ff_dnn_execute_layer_math_binary(operands, input_indexes, 2, ¶ms, NULL);
-
- output = operands[2].data;
- for (int i = 0; i < sizeof(input0) / sizeof(float); i++) {
- float expected_output = get_expected(input0[i], input1[i], op);
- if (fabs(output[i] - expected_output) > EPSON) {
- printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n",
- op, i, output[i], expected_output, __FILE__, __LINE__);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-}
-
-static int test(DNNMathBinaryOperation op)
-{
- if (test_broadcast_input0(op))
- return 1;
-
- if (test_broadcast_input1(op))
- return 1;
-
- if (test_no_broadcast(op))
- return 1;
-
- return 0;
-}
-
-int main(int argc, char **argv)
-{
- if (test(DMBO_SUB))
- return 1;
-
- if (test(DMBO_ADD))
- return 1;
-
- if (test(DMBO_MUL))
- return 1;
-
- if (test(DMBO_REALDIV))
- return 1;
-
- if (test(DMBO_MINIMUM))
- return 1;
-
- if (test(DMBO_FLOORMOD))
- return 1;
-
- return 0;
-}
diff --git a/libavfilter/tests/dnn-layer-mathunary.c b/libavfilter/tests/dnn-layer-mathunary.c
deleted file mode 100644
index 0f84c12960..0000000000
--- a/libavfilter/tests/dnn-layer-mathunary.c
+++ /dev/null
@@ -1,148 +0,0 @@
-/*
- * Copyright (c) 2020
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <stdio.h>
-#include <string.h>
-#include <math.h>
-#include "libavfilter/dnn/dnn_backend_native_layer_mathunary.h"
-#include "libavutil/avassert.h"
-
-#define EPS 0.00001
-
-static float get_expected(float f, DNNMathUnaryOperation op)
-{
- switch (op)
- {
- case DMUO_ABS:
- return (f >= 0) ? f : -f;
- case DMUO_SIN:
- return sin(f);
- case DMUO_COS:
- return cos(f);
- case DMUO_TAN:
- return tan(f);
- case DMUO_ASIN:
- return asin(f);
- case DMUO_ACOS:
- return acos(f);
- case DMUO_ATAN:
- return atan(f);
- case DMUO_SINH:
- return sinh(f);
- case DMUO_COSH:
- return cosh(f);
- case DMUO_TANH:
- return tanh(f);
- case DMUO_ASINH:
- return asinh(f);
- case DMUO_ACOSH:
- return acosh(f);
- case DMUO_ATANH:
- return atanh(f);
- case DMUO_CEIL:
- return ceil(f);
- case DMUO_FLOOR:
- return floor(f);
- case DMUO_ROUND:
- return round(f);
- case DMUO_EXP:
- return exp(f);
- default:
- av_assert0(!"not supported yet");
- return 0.f;
- }
-}
-
-static int test(DNNMathUnaryOperation op)
-{
- DnnLayerMathUnaryParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*1*3*3] = {
- 0.1, 0.5, 0.75, -3, 2.5, 2, -2.1, 7.8, 100};
- float *output;
-
- params.un_op = op;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 1;
- operands[0].dims[2] = 3;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_math_unary(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(input) / sizeof(float); ++i) {
- float expected_output = get_expected(input[i], op);
- int output_nan = isnan(output[i]);
- int expected_nan = isnan(expected_output);
- if ((!output_nan && !expected_nan && fabs(output[i] - expected_output) > EPS) ||
- (output_nan && !expected_nan) || (!output_nan && expected_nan)) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-}
-
-int main(int agrc, char **argv)
-{
- if (test(DMUO_ABS))
- return 1;
- if (test(DMUO_SIN))
- return 1;
- if (test(DMUO_COS))
- return 1;
- if (test(DMUO_TAN))
- return 1;
- if (test(DMUO_ASIN))
- return 1;
- if (test(DMUO_ACOS))
- return 1;
- if (test(DMUO_ATAN))
- return 1;
- if (test(DMUO_SINH))
- return 1;
- if (test(DMUO_COSH))
- return 1;
- if (test(DMUO_TANH))
- return 1;
- if (test(DMUO_ASINH))
- return 1;
- if (test(DMUO_ACOSH))
- return 1;
- if (test(DMUO_ATANH))
- return 1;
- if (test(DMUO_CEIL))
- return 1;
- if (test(DMUO_FLOOR))
- return 1;
- if (test(DMUO_ROUND))
- return 1;
- if (test(DMUO_EXP))
- return 1;
- return 0;
-}
diff --git a/libavfilter/tests/dnn-layer-maximum.c b/libavfilter/tests/dnn-layer-maximum.c
deleted file mode 100644
index bf22f3719f..0000000000
--- a/libavfilter/tests/dnn-layer-maximum.c
+++ /dev/null
@@ -1,71 +0,0 @@
-/*
- * Copyright (c) 2019 Guo Yejun
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <stdio.h>
-#include <string.h>
-#include <math.h>
-#include "libavfilter/dnn/dnn_backend_native_layer_maximum.h"
-
-#define EPSON 0.00001
-
-static int test(void)
-{
- DnnLayerMaximumParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*1*2*3] = {
- -3, 2.5, 2, -2.1, 7.8, 100
- };
- float *output;
-
- params.val.y = 2.3;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 1;
- operands[0].dims[2] = 2;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_maximum(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(input) / sizeof(float); i++) {
- float expected_output = input[i] > params.val.y ? input[i] : params.val.y;
- if (fabs(output[i] - expected_output) > EPSON) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-
-}
-
-int main(int argc, char **argv)
-{
- if (test())
- return 1;
-
- return 0;
-}
diff --git a/libavfilter/tests/dnn-layer-pad.c b/libavfilter/tests/dnn-layer-pad.c
deleted file mode 100644
index a8443ce3be..0000000000
--- a/libavfilter/tests/dnn-layer-pad.c
+++ /dev/null
@@ -1,239 +0,0 @@
-/*
- * Copyright (c) 2019 Guo Yejun
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
-#include <stdio.h>
-#include <string.h>
-#include <math.h>
-#include "libavfilter/dnn/dnn_backend_native_layer_pad.h"
-
-#define EPSON 0.00001
-
-static int test_with_mode_symmetric(void)
-{
- // the input data and expected data are generated with below python code.
- /*
- x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- y = tf.pad(x, [[0, 0], [2, 3], [3, 2], [0, 0]], 'SYMMETRIC')
- data = np.arange(48).reshape(1, 4, 4, 3);
-
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
- output = sess.run(y, feed_dict={x: data})
-
- print(list(data.flatten()))
- print(list(output.flatten()))
- print(data.shape)
- print(output.shape)
- */
-
- LayerPadParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*4*4*3] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
- };
- float expected_output[1*9*9*3] = {
- 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 6.0, 7.0, 8.0, 3.0,
- 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 6.0, 7.0, 8.0, 3.0, 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0,
- 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0,
- 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 30.0, 31.0, 32.0, 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0,
- 34.0, 35.0, 30.0, 31.0, 32.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0,
- 44.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, 44.0, 30.0, 31.0, 32.0,
- 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0,
- 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0
- };
- float *output;
-
- params.mode = LPMP_SYMMETRIC;
- params.paddings[0][0] = 0;
- params.paddings[0][1] = 0;
- params.paddings[1][0] = 2;
- params.paddings[1][1] = 3;
- params.paddings[2][0] = 3;
- params.paddings[2][1] = 2;
- params.paddings[3][0] = 0;
- params.paddings[3][1] = 0;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 4;
- operands[0].dims[2] = 4;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
- if (fabs(output[i] - expected_output[i]) > EPSON) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-
-}
-
-static int test_with_mode_reflect(void)
-{
- // the input data and expected data are generated with below python code.
- /*
- x = tf.placeholder(tf.float32, shape=[3, None, None, 3])
- y = tf.pad(x, [[1, 2], [0, 0], [0, 0], [0, 0]], 'REFLECT')
- data = np.arange(36).reshape(3, 2, 2, 3);
-
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
- output = sess.run(y, feed_dict={x: data})
-
- print(list(data.flatten()))
- print(list(output.flatten()))
- print(data.shape)
- print(output.shape)
- */
-
- LayerPadParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[3*2*2*3] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
- };
- float expected_output[6*2*2*3] = {
- 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0,
- 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0,
- 35.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0
- };
- float *output;
-
- params.mode = LPMP_REFLECT;
- params.paddings[0][0] = 1;
- params.paddings[0][1] = 2;
- params.paddings[1][0] = 0;
- params.paddings[1][1] = 0;
- params.paddings[2][0] = 0;
- params.paddings[2][1] = 0;
- params.paddings[3][0] = 0;
- params.paddings[3][1] = 0;
-
- operands[0].data = input;
- operands[0].dims[0] = 3;
- operands[0].dims[1] = 2;
- operands[0].dims[2] = 2;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
- if (fabs(output[i] - expected_output[i]) > EPSON) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-
-}
-
-static int test_with_mode_constant(void)
-{
- // the input data and expected data are generated with below python code.
- /*
- x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
- y = tf.pad(x, [[0, 0], [1, 0], [0, 0], [1, 2]], 'CONSTANT', constant_values=728)
- data = np.arange(12).reshape(1, 2, 2, 3);
-
- sess=tf.Session()
- sess.run(tf.global_variables_initializer())
- output = sess.run(y, feed_dict={x: data})
-
- print(list(data.flatten()))
- print(list(output.flatten()))
- print(data.shape)
- print(output.shape)
- */
-
- LayerPadParams params;
- DnnOperand operands[2];
- int32_t input_indexes[1];
- float input[1*2*2*3] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- };
- float expected_output[1*3*2*6] = {
- 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0,
- 728.0, 728.0, 0.0, 1.0, 2.0, 728.0, 728.0, 728.0, 3.0, 4.0, 5.0, 728.0, 728.0,
- 728.0, 6.0, 7.0, 8.0, 728.0, 728.0, 728.0, 9.0, 10.0, 11.0, 728.0, 728.0
- };
- float *output;
-
- params.mode = LPMP_CONSTANT;
- params.constant_values = 728;
- params.paddings[0][0] = 0;
- params.paddings[0][1] = 0;
- params.paddings[1][0] = 1;
- params.paddings[1][1] = 0;
- params.paddings[2][0] = 0;
- params.paddings[2][1] = 0;
- params.paddings[3][0] = 1;
- params.paddings[3][1] = 2;
-
- operands[0].data = input;
- operands[0].dims[0] = 1;
- operands[0].dims[1] = 2;
- operands[0].dims[2] = 2;
- operands[0].dims[3] = 3;
- operands[1].data = NULL;
-
- input_indexes[0] = 0;
- ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL);
-
- output = operands[1].data;
- for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
- if (fabs(output[i] - expected_output[i]) > EPSON) {
- printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
- av_freep(&output);
- return 1;
- }
- }
-
- av_freep(&output);
- return 0;
-
-}
-
-int main(int argc, char **argv)
-{
- if (test_with_mode_symmetric())
- return 1;
-
- if (test_with_mode_reflect())
- return 1;
-
- if (test_with_mode_constant())
- return 1;
-}
diff --git a/libavfilter/vf_derain.c b/libavfilter/vf_derain.c
index 7e84cd65a3..35e1ae736a 100644
--- a/libavfilter/vf_derain.c
+++ b/libavfilter/vf_derain.c
@@ -44,7 +44,6 @@ static const AVOption derain_options[] = {
{ "derain", "derain filter flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "type" },
{ "dehaze", "dehaze filter flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "type" },
{ "dnn_backend", "DNN backend", OFFSET(dnnctx.backend_type), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, FLAGS, "backend" },
- { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
#if (CONFIG_LIBTENSORFLOW == 1)
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
#endif
diff --git a/libavfilter/vf_dnn_processing.c b/libavfilter/vf_dnn_processing.c
index 968df666fc..18ecf111fe 100644
--- a/libavfilter/vf_dnn_processing.c
+++ b/libavfilter/vf_dnn_processing.c
@@ -46,7 +46,6 @@ typedef struct DnnProcessingContext {
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
static const AVOption dnn_processing_options[] = {
{ "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 1 }, INT_MIN, INT_MAX, FLAGS, "backend" },
- { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
#if (CONFIG_LIBTENSORFLOW == 1)
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
#endif
diff --git a/libavfilter/vf_sr.c b/libavfilter/vf_sr.c
index e9fe746bae..e06ae91d7c 100644
--- a/libavfilter/vf_sr.c
+++ b/libavfilter/vf_sr.c
@@ -47,7 +47,6 @@ typedef struct SRContext {
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
static const AVOption sr_options[] = {
{ "dnn_backend", "DNN backend used for model execution", OFFSET(dnnctx.backend_type), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, FLAGS, "backend" },
- { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" },
#if (CONFIG_LIBTENSORFLOW == 1)
{ "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" },
#endif
diff --git a/tests/Makefile b/tests/Makefile
index d80065a9bf..35ea824663 100644
--- a/tests/Makefile
+++ b/tests/Makefile
@@ -172,7 +172,6 @@ include $(SRC_PATH)/tests/fate/cover-art.mak
include $(SRC_PATH)/tests/fate/dca.mak
include $(SRC_PATH)/tests/fate/demux.mak
include $(SRC_PATH)/tests/fate/dfa.mak
-include $(SRC_PATH)/tests/fate/dnn.mak
include $(SRC_PATH)/tests/fate/dnxhd.mak
include $(SRC_PATH)/tests/fate/dpcm.mak
include $(SRC_PATH)/tests/fate/dvvideo.mak
diff --git a/tests/fate/dnn.mak b/tests/fate/dnn.mak
deleted file mode 100644
index a30a2976d9..0000000000
--- a/tests/fate/dnn.mak
+++ /dev/null
@@ -1,45 +0,0 @@
-DNNTESTSDIR := libavfilter/tests
-
-FATE_DNN += fate-dnn-layer-pad
-fate-dnn-layer-pad: $(DNNTESTSDIR)/dnn-layer-pad$(EXESUF)
-fate-dnn-layer-pad: CMD = run $(DNNTESTSDIR)/dnn-layer-pad$(EXESUF)
-fate-dnn-layer-pad: CMP = null
-
-FATE_DNN += fate-dnn-layer-conv2d
-fate-dnn-layer-conv2d: $(DNNTESTSDIR)/dnn-layer-conv2d$(EXESUF)
-fate-dnn-layer-conv2d: CMD = run $(DNNTESTSDIR)/dnn-layer-conv2d$(EXESUF)
-fate-dnn-layer-conv2d: CMP = null
-
-FATE_DNN += fate-dnn-layer-dense
-fate-dnn-layer-dense: $(DNNTESTSDIR)/dnn-layer-dense$(EXESUF)
-fate-dnn-layer-dense: CMD = run $(DNNTESTSDIR)/dnn-layer-dense$(EXESUF)
-fate-dnn-layer-dense: CMP = null
-
-FATE_DNN += fate-dnn-layer-depth2space
-fate-dnn-layer-depth2space: $(DNNTESTSDIR)/dnn-layer-depth2space$(EXESUF)
-fate-dnn-layer-depth2space: CMD = run $(DNNTESTSDIR)/dnn-layer-depth2space$(EXESUF)
-fate-dnn-layer-depth2space: CMP = null
-
-FATE_DNN += fate-dnn-layer-mathbinary
-fate-dnn-layer-mathbinary: $(DNNTESTSDIR)/dnn-layer-mathbinary$(EXESUF)
-fate-dnn-layer-mathbinary: CMD = run $(DNNTESTSDIR)/dnn-layer-mathbinary$(EXESUF)
-fate-dnn-layer-mathbinary: CMP = null
-
-FATE_DNN += fate-dnn-layer-maximum
-fate-dnn-layer-maximum: $(DNNTESTSDIR)/dnn-layer-maximum$(EXESUF)
-fate-dnn-layer-maximum: CMD = run $(DNNTESTSDIR)/dnn-layer-maximum$(EXESUF)
-fate-dnn-layer-maximum: CMP = null
-
-FATE_DNN += fate-dnn-layer-mathunary
-fate-dnn-layer-mathunary: $(DNNTESTSDIR)/dnn-layer-mathunary$(EXESUF)
-fate-dnn-layer-mathunary: CMD = run $(DNNTESTSDIR)/dnn-layer-mathunary$(EXESUF)
-fate-dnn-layer-mathunary: CMP = null
-
-FATE_DNN += fate-dnn-layer-avgpool
-fate-dnn-layer-avgpool: $(DNNTESTSDIR)/dnn-layer-avgpool$(EXESUF)
-fate-dnn-layer-avgpool: CMD = run $(DNNTESTSDIR)/dnn-layer-avgpool$(EXESUF)
-fate-dnn-layer-avgpool: CMP = null
-
-FATE-$(CONFIG_DNN) += $(FATE_DNN)
-
-fate-dnn: $(FATE_DNN)
More information about the ffmpeg-cvslog
mailing list