[FFmpeg-cvslog] lavfi/dnn_classify: add filter dnn_classify for classification based on detection bounding boxes
Guo, Yejun
git at videolan.org
Thu May 6 06:08:58 EEST 2021
ffmpeg | branch: master | Guo, Yejun <yejun.guo at intel.com> | Wed Mar 17 14:08:38 2021 +0800| [41ef57fdb27c9583e61af8eea1ba710314cd86e5] | committer: Guo, Yejun
lavfi/dnn_classify: add filter dnn_classify for classification based on detection bounding boxes
classification is done on every detection bounding box in frame's side data,
which are the results of object detection (filter dnn_detect).
Please refer to commit log of dnn_detect for the material for detection,
and see below for classification.
- download material for classifcation:
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.bin
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.xml
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.label
- run command as:
./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,dnn_classify=dnn_backend=openvino:model=emotions-recognition-retail-0003.xml:input=data:output=prob_emotion:confidence=0.3:labels=emotions-recognition-retail-0003.label:target=face,showinfo -f null -
We'll see the detect&classify result as below:
[Parsed_showinfo_2 @ 0x55b7d25e77c0] side data - detection bounding boxes:
[Parsed_showinfo_2 @ 0x55b7d25e77c0] source: face-detection-adas-0001.xml, emotions-recognition-retail-0003.xml
[Parsed_showinfo_2 @ 0x55b7d25e77c0] index: 0, region: (1005, 813) -> (1086, 905), label: face, confidence: 10000/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0] classify: label: happy, confidence: 6757/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0] index: 1, region: (888, 839) -> (967, 926), label: face, confidence: 6917/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0] classify: label: anger, confidence: 4320/10000.
Signed-off-by: Guo, Yejun <yejun.guo at intel.com>
> http://git.videolan.org/gitweb.cgi/ffmpeg.git/?a=commit;h=41ef57fdb27c9583e61af8eea1ba710314cd86e5
---
configure | 1 +
doc/filters.texi | 39 +++++
libavfilter/Makefile | 1 +
libavfilter/allfilters.c | 1 +
libavfilter/vf_dnn_classify.c | 330 ++++++++++++++++++++++++++++++++++++++++++
5 files changed, 372 insertions(+)
diff --git a/configure b/configure
index 799b5b69ca..9ece040c7b 100755
--- a/configure
+++ b/configure
@@ -3581,6 +3581,7 @@ derain_filter_select="dnn"
deshake_filter_select="pixelutils"
deshake_opencl_filter_deps="opencl"
dilation_opencl_filter_deps="opencl"
+dnn_classify_filter_select="dnn"
dnn_detect_filter_select="dnn"
dnn_processing_filter_select="dnn"
drawtext_filter_deps="libfreetype"
diff --git a/doc/filters.texi b/doc/filters.texi
index 36e35a175b..b405cc5dfb 100644
--- a/doc/filters.texi
+++ b/doc/filters.texi
@@ -10127,6 +10127,45 @@ ffmpeg -i INPUT -f lavfi -i nullsrc=hd720,geq='r=128+80*(sin(sqrt((X-W/2)*(X-W/2
@end example
@end itemize
+ at section dnn_classify
+
+Do classification with deep neural networks based on bounding boxes.
+
+The filter accepts the following options:
+
+ at table @option
+ at item dnn_backend
+Specify which DNN backend to use for model loading and execution. This option accepts
+only openvino now, tensorflow backends will be added.
+
+ at item model
+Set path to model file specifying network architecture and its parameters.
+Note that different backends use different file formats.
+
+ at item input
+Set the input name of the dnn network.
+
+ at item output
+Set the output name of the dnn network.
+
+ at item confidence
+Set the confidence threshold (default: 0.5).
+
+ at item labels
+Set path to label file specifying the mapping between label id and name.
+Each label name is written in one line, tailing spaces and empty lines are skipped.
+The first line is the name of label id 0,
+and the second line is the name of label id 1, etc.
+The label id is considered as name if the label file is not provided.
+
+ at item backend_configs
+Set the configs to be passed into backend
+
+For tensorflow backend, you can set its configs with @option{sess_config} options,
+please use tools/python/tf_sess_config.py to get the configs for your system.
+
+ at end table
+
@section dnn_detect
Do object detection with deep neural networks.
diff --git a/libavfilter/Makefile b/libavfilter/Makefile
index 5a287364b0..6c22d0404e 100644
--- a/libavfilter/Makefile
+++ b/libavfilter/Makefile
@@ -243,6 +243,7 @@ OBJS-$(CONFIG_DILATION_FILTER) += vf_neighbor.o
OBJS-$(CONFIG_DILATION_OPENCL_FILTER) += vf_neighbor_opencl.o opencl.o \
opencl/neighbor.o
OBJS-$(CONFIG_DISPLACE_FILTER) += vf_displace.o framesync.o
+OBJS-$(CONFIG_DNN_CLASSIFY_FILTER) += vf_dnn_classify.o
OBJS-$(CONFIG_DNN_DETECT_FILTER) += vf_dnn_detect.o
OBJS-$(CONFIG_DNN_PROCESSING_FILTER) += vf_dnn_processing.o
OBJS-$(CONFIG_DOUBLEWEAVE_FILTER) += vf_weave.o
diff --git a/libavfilter/allfilters.c b/libavfilter/allfilters.c
index 931d7dbb0d..87c3661cf4 100644
--- a/libavfilter/allfilters.c
+++ b/libavfilter/allfilters.c
@@ -229,6 +229,7 @@ extern const AVFilter ff_vf_detelecine;
extern const AVFilter ff_vf_dilation;
extern const AVFilter ff_vf_dilation_opencl;
extern const AVFilter ff_vf_displace;
+extern const AVFilter ff_vf_dnn_classify;
extern const AVFilter ff_vf_dnn_detect;
extern const AVFilter ff_vf_dnn_processing;
extern const AVFilter ff_vf_doubleweave;
diff --git a/libavfilter/vf_dnn_classify.c b/libavfilter/vf_dnn_classify.c
new file mode 100644
index 0000000000..18fcd452d0
--- /dev/null
+++ b/libavfilter/vf_dnn_classify.c
@@ -0,0 +1,330 @@
+/*
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * implementing an classification filter using deep learning networks.
+ */
+
+#include "libavformat/avio.h"
+#include "libavutil/opt.h"
+#include "libavutil/pixdesc.h"
+#include "libavutil/avassert.h"
+#include "libavutil/imgutils.h"
+#include "filters.h"
+#include "dnn_filter_common.h"
+#include "formats.h"
+#include "internal.h"
+#include "libavutil/time.h"
+#include "libavutil/avstring.h"
+#include "libavutil/detection_bbox.h"
+
+typedef struct DnnClassifyContext {
+ const AVClass *class;
+ DnnContext dnnctx;
+ float confidence;
+ char *labels_filename;
+ char *target;
+ char **labels;
+ int label_count;
+} DnnClassifyContext;
+
+#define OFFSET(x) offsetof(DnnClassifyContext, dnnctx.x)
+#define OFFSET2(x) offsetof(DnnClassifyContext, x)
+#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
+static const AVOption dnn_classify_options[] = {
+ { "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 2 }, INT_MIN, INT_MAX, FLAGS, "backend" },
+#if (CONFIG_LIBOPENVINO == 1)
+ { "openvino", "openvino backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 2 }, 0, 0, FLAGS, "backend" },
+#endif
+ DNN_COMMON_OPTIONS
+ { "confidence", "threshold of confidence", OFFSET2(confidence), AV_OPT_TYPE_FLOAT, { .dbl = 0.5 }, 0, 1, FLAGS},
+ { "labels", "path to labels file", OFFSET2(labels_filename), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
+ { "target", "which one to be classified", OFFSET2(target), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
+ { NULL }
+};
+
+AVFILTER_DEFINE_CLASS(dnn_classify);
+
+static int dnn_classify_post_proc(AVFrame *frame, DNNData *output, uint32_t bbox_index, AVFilterContext *filter_ctx)
+{
+ DnnClassifyContext *ctx = filter_ctx->priv;
+ float conf_threshold = ctx->confidence;
+ AVDetectionBBoxHeader *header;
+ AVDetectionBBox *bbox;
+ float *classifications;
+ uint32_t label_id;
+ float confidence;
+ AVFrameSideData *sd;
+
+ if (output->channels <= 0) {
+ return -1;
+ }
+
+ sd = av_frame_get_side_data(frame, AV_FRAME_DATA_DETECTION_BBOXES);
+ header = (AVDetectionBBoxHeader *)sd->data;
+
+ if (bbox_index == 0) {
+ av_strlcat(header->source, ", ", sizeof(header->source));
+ av_strlcat(header->source, ctx->dnnctx.model_filename, sizeof(header->source));
+ }
+
+ classifications = output->data;
+ label_id = 0;
+ confidence= classifications[0];
+ for (int i = 1; i < output->channels; i++) {
+ if (classifications[i] > confidence) {
+ label_id = i;
+ confidence= classifications[i];
+ }
+ }
+
+ if (confidence < conf_threshold) {
+ return 0;
+ }
+
+ bbox = av_get_detection_bbox(header, bbox_index);
+ bbox->classify_confidences[bbox->classify_count] = av_make_q((int)(confidence * 10000), 10000);
+
+ if (ctx->labels && label_id < ctx->label_count) {
+ av_strlcpy(bbox->classify_labels[bbox->classify_count], ctx->labels[label_id], sizeof(bbox->classify_labels[bbox->classify_count]));
+ } else {
+ snprintf(bbox->classify_labels[bbox->classify_count], sizeof(bbox->classify_labels[bbox->classify_count]), "%d", label_id);
+ }
+
+ bbox->classify_count++;
+
+ return 0;
+}
+
+static void free_classify_labels(DnnClassifyContext *ctx)
+{
+ for (int i = 0; i < ctx->label_count; i++) {
+ av_freep(&ctx->labels[i]);
+ }
+ ctx->label_count = 0;
+ av_freep(&ctx->labels);
+}
+
+static int read_classify_label_file(AVFilterContext *context)
+{
+ int line_len;
+ FILE *file;
+ DnnClassifyContext *ctx = context->priv;
+
+ file = av_fopen_utf8(ctx->labels_filename, "r");
+ if (!file){
+ av_log(context, AV_LOG_ERROR, "failed to open file %s\n", ctx->labels_filename);
+ return AVERROR(EINVAL);
+ }
+
+ while (!feof(file)) {
+ char *label;
+ char buf[256];
+ if (!fgets(buf, 256, file)) {
+ break;
+ }
+
+ line_len = strlen(buf);
+ while (line_len) {
+ int i = line_len - 1;
+ if (buf[i] == '\n' || buf[i] == '\r' || buf[i] == ' ') {
+ buf[i] = '\0';
+ line_len--;
+ } else {
+ break;
+ }
+ }
+
+ if (line_len == 0) // empty line
+ continue;
+
+ if (line_len >= AV_DETECTION_BBOX_LABEL_NAME_MAX_SIZE) {
+ av_log(context, AV_LOG_ERROR, "label %s too long\n", buf);
+ fclose(file);
+ return AVERROR(EINVAL);
+ }
+
+ label = av_strdup(buf);
+ if (!label) {
+ av_log(context, AV_LOG_ERROR, "failed to allocate memory for label %s\n", buf);
+ fclose(file);
+ return AVERROR(ENOMEM);
+ }
+
+ if (av_dynarray_add_nofree(&ctx->labels, &ctx->label_count, label) < 0) {
+ av_log(context, AV_LOG_ERROR, "failed to do av_dynarray_add\n");
+ fclose(file);
+ av_freep(&label);
+ return AVERROR(ENOMEM);
+ }
+ }
+
+ fclose(file);
+ return 0;
+}
+
+static av_cold int dnn_classify_init(AVFilterContext *context)
+{
+ DnnClassifyContext *ctx = context->priv;
+ int ret = ff_dnn_init(&ctx->dnnctx, DFT_ANALYTICS_CLASSIFY, context);
+ if (ret < 0)
+ return ret;
+ ff_dnn_set_classify_post_proc(&ctx->dnnctx, dnn_classify_post_proc);
+
+ if (ctx->labels_filename) {
+ return read_classify_label_file(context);
+ }
+ return 0;
+}
+
+static int dnn_classify_query_formats(AVFilterContext *context)
+{
+ static const enum AVPixelFormat pix_fmts[] = {
+ AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
+ AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAYF32,
+ AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
+ AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
+ AV_PIX_FMT_NV12,
+ AV_PIX_FMT_NONE
+ };
+ AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
+ return ff_set_common_formats(context, fmts_list);
+}
+
+static int dnn_classify_flush_frame(AVFilterLink *outlink, int64_t pts, int64_t *out_pts)
+{
+ DnnClassifyContext *ctx = outlink->src->priv;
+ int ret;
+ DNNAsyncStatusType async_state;
+
+ ret = ff_dnn_flush(&ctx->dnnctx);
+ if (ret != DNN_SUCCESS) {
+ return -1;
+ }
+
+ do {
+ AVFrame *in_frame = NULL;
+ AVFrame *out_frame = NULL;
+ async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame);
+ if (out_frame) {
+ av_assert0(in_frame == out_frame);
+ ret = ff_filter_frame(outlink, out_frame);
+ if (ret < 0)
+ return ret;
+ if (out_pts)
+ *out_pts = out_frame->pts + pts;
+ }
+ av_usleep(5000);
+ } while (async_state >= DAST_NOT_READY);
+
+ return 0;
+}
+
+static int dnn_classify_activate(AVFilterContext *filter_ctx)
+{
+ AVFilterLink *inlink = filter_ctx->inputs[0];
+ AVFilterLink *outlink = filter_ctx->outputs[0];
+ DnnClassifyContext *ctx = filter_ctx->priv;
+ AVFrame *in = NULL;
+ int64_t pts;
+ int ret, status;
+ int got_frame = 0;
+ int async_state;
+
+ FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
+
+ do {
+ // drain all input frames
+ ret = ff_inlink_consume_frame(inlink, &in);
+ if (ret < 0)
+ return ret;
+ if (ret > 0) {
+ if (ff_dnn_execute_model_classification(&ctx->dnnctx, in, in, ctx->target) != DNN_SUCCESS) {
+ return AVERROR(EIO);
+ }
+ }
+ } while (ret > 0);
+
+ // drain all processed frames
+ do {
+ AVFrame *in_frame = NULL;
+ AVFrame *out_frame = NULL;
+ async_state = ff_dnn_get_async_result(&ctx->dnnctx, &in_frame, &out_frame);
+ if (out_frame) {
+ av_assert0(in_frame == out_frame);
+ ret = ff_filter_frame(outlink, out_frame);
+ if (ret < 0)
+ return ret;
+ got_frame = 1;
+ }
+ } while (async_state == DAST_SUCCESS);
+
+ // if frame got, schedule to next filter
+ if (got_frame)
+ return 0;
+
+ if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
+ if (status == AVERROR_EOF) {
+ int64_t out_pts = pts;
+ ret = dnn_classify_flush_frame(outlink, pts, &out_pts);
+ ff_outlink_set_status(outlink, status, out_pts);
+ return ret;
+ }
+ }
+
+ FF_FILTER_FORWARD_WANTED(outlink, inlink);
+
+ return 0;
+}
+
+static av_cold void dnn_classify_uninit(AVFilterContext *context)
+{
+ DnnClassifyContext *ctx = context->priv;
+ ff_dnn_uninit(&ctx->dnnctx);
+ free_classify_labels(ctx);
+}
+
+static const AVFilterPad dnn_classify_inputs[] = {
+ {
+ .name = "default",
+ .type = AVMEDIA_TYPE_VIDEO,
+ },
+ { NULL }
+};
+
+static const AVFilterPad dnn_classify_outputs[] = {
+ {
+ .name = "default",
+ .type = AVMEDIA_TYPE_VIDEO,
+ },
+ { NULL }
+};
+
+const AVFilter ff_vf_dnn_classify = {
+ .name = "dnn_classify",
+ .description = NULL_IF_CONFIG_SMALL("Apply DNN classify filter to the input."),
+ .priv_size = sizeof(DnnClassifyContext),
+ .init = dnn_classify_init,
+ .uninit = dnn_classify_uninit,
+ .query_formats = dnn_classify_query_formats,
+ .inputs = dnn_classify_inputs,
+ .outputs = dnn_classify_outputs,
+ .priv_class = &dnn_classify_class,
+ .activate = dnn_classify_activate,
+};
More information about the ffmpeg-cvslog
mailing list