[FFmpeg-cvslog] r26206 - in trunk/libavcodec: Makefile ac3enc.c ac3enc_fixed.c ac3enc_fixed.h

jbr subversion
Mon Jan 3 17:08:56 CET 2011


Author: jbr
Date: Mon Jan  3 17:08:56 2011
New Revision: 26206

Log:
Move fixed-point parts of the AC-3 encoder to separate files.

Added:
   trunk/libavcodec/ac3enc_fixed.c
      - copied, changed from r26205, trunk/libavcodec/ac3enc.c
   trunk/libavcodec/ac3enc_fixed.h
      - copied, changed from r26205, trunk/libavcodec/ac3enc.c
Modified:
   trunk/libavcodec/Makefile
   trunk/libavcodec/ac3enc.c

Modified: trunk/libavcodec/Makefile
==============================================================================
--- trunk/libavcodec/Makefile	Mon Jan  3 13:43:48 2011	(r26205)
+++ trunk/libavcodec/Makefile	Mon Jan  3 17:08:56 2011	(r26206)
@@ -54,7 +54,7 @@ OBJS-$(CONFIG_AAC_ENCODER)             +
                                           mpeg4audio.o
 OBJS-$(CONFIG_AASC_DECODER)            += aasc.o msrledec.o
 OBJS-$(CONFIG_AC3_DECODER)             += ac3dec.o ac3dec_data.o ac3.o
-OBJS-$(CONFIG_AC3_ENCODER)             += ac3enc.o ac3tab.o ac3.o
+OBJS-$(CONFIG_AC3_ENCODER)             += ac3enc_fixed.o ac3tab.o ac3.o
 OBJS-$(CONFIG_ALAC_DECODER)            += alac.o
 OBJS-$(CONFIG_ALAC_ENCODER)            += alacenc.o
 OBJS-$(CONFIG_ALS_DECODER)             += alsdec.o bgmc.o mpeg4audio.o

Modified: trunk/libavcodec/ac3enc.c
==============================================================================
--- trunk/libavcodec/ac3enc.c	Mon Jan  3 13:43:48 2011	(r26205)
+++ trunk/libavcodec/ac3enc.c	Mon Jan  3 17:08:56 2011	(r26206)
@@ -43,33 +43,9 @@
 /** Scale a float value by 2^bits and convert to an integer. */
 #define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
 
-typedef int16_t SampleType;
-typedef int32_t CoefType;
-
-#define SCALE_COEF(a) (a)
-
-/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
-#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767)
 
+#include "ac3enc_fixed.h"
 
-/**
- * Compex number.
- * Used in fixed-point MDCT calculation.
- */
-typedef struct IComplex {
-    int16_t re,im;
-} IComplex;
-
-typedef struct AC3MDCTContext {
-    const int16_t *window;                  ///< MDCT window function
-    int nbits;                              ///< log2(transform size)
-    int16_t *costab;                        ///< FFT cos table
-    int16_t *sintab;                        ///< FFT sin table
-    int16_t *xcos1;                         ///< MDCT cos table
-    int16_t *xsin1;                         ///< MDCT sin table
-    int16_t *rot_tmp;                       ///< temp buffer for pre-rotated samples
-    IComplex *cplx_tmp;                     ///< temp buffer for complex pre-rotated samples
-} AC3MDCTContext;
 
 /**
  * Data for a single audio block.
@@ -154,6 +130,21 @@ typedef struct AC3EncodeContext {
 } AC3EncodeContext;
 
 
+/* prototypes for functions in ac3enc_fixed.c */
+
+static av_cold void mdct_end(AC3MDCTContext *mdct);
+
+static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
+                             int nbits);
+
+static void mdct512(AC3MDCTContext *mdct, CoefType *out, SampleType *in);
+
+static void apply_window(SampleType *output, const SampleType *input,
+                         const SampleType *window, int n);
+
+static int normalize_samples(AC3EncodeContext *s);
+
+
 /**
  * LUT for number of exponent groups.
  * exponent_group_tab[exponent strategy-1][number of coefficients]
@@ -234,291 +225,6 @@ static void deinterleave_input_samples(A
 
 
 /**
- * Finalize MDCT and free allocated memory.
- */
-static av_cold void mdct_end(AC3MDCTContext *mdct)
-{
-    mdct->nbits = 0;
-    av_freep(&mdct->costab);
-    av_freep(&mdct->sintab);
-    av_freep(&mdct->xcos1);
-    av_freep(&mdct->xsin1);
-    av_freep(&mdct->rot_tmp);
-    av_freep(&mdct->cplx_tmp);
-}
-
-
-/**
- * Initialize FFT tables.
- * @param ln log2(FFT size)
- */
-static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln)
-{
-    int i, n, n2;
-    float alpha;
-
-    n  = 1 << ln;
-    n2 = n >> 1;
-
-    FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail);
-
-    for (i = 0; i < n2; i++) {
-        alpha     = 2.0 * M_PI * i / n;
-        mdct->costab[i] = FIX15(cos(alpha));
-        mdct->sintab[i] = FIX15(sin(alpha));
-    }
-
-    return 0;
-fft_alloc_fail:
-    mdct_end(mdct);
-    return AVERROR(ENOMEM);
-}
-
-
-/**
- * Initialize MDCT tables.
- * @param nbits log2(MDCT size)
- */
-static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
-                             int nbits)
-{
-    int i, n, n4, ret;
-
-    n  = 1 << nbits;
-    n4 = n >> 2;
-
-    mdct->nbits = nbits;
-
-    ret = fft_init(avctx, mdct, nbits - 2);
-    if (ret)
-        return ret;
-
-    mdct->window = ff_ac3_window;
-
-    FF_ALLOC_OR_GOTO(avctx, mdct->xcos1,    n4 * sizeof(*mdct->xcos1),    mdct_alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, mdct->xsin1,    n4 * sizeof(*mdct->xsin1),    mdct_alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp,  n  * sizeof(*mdct->rot_tmp),  mdct_alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail);
-
-    for (i = 0; i < n4; i++) {
-        float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
-        mdct->xcos1[i] = FIX15(-cos(alpha));
-        mdct->xsin1[i] = FIX15(-sin(alpha));
-    }
-
-    return 0;
-mdct_alloc_fail:
-    mdct_end(mdct);
-    return AVERROR(ENOMEM);
-}
-
-
-/** Butterfly op */
-#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1)  \
-{                                                       \
-  int ax, ay, bx, by;                                   \
-  bx  = pre1;                                           \
-  by  = pim1;                                           \
-  ax  = qre1;                                           \
-  ay  = qim1;                                           \
-  pre = (bx + ax) >> 1;                                 \
-  pim = (by + ay) >> 1;                                 \
-  qre = (bx - ax) >> 1;                                 \
-  qim = (by - ay) >> 1;                                 \
-}
-
-
-/** Complex multiply */
-#define CMUL(pre, pim, are, aim, bre, bim)              \
-{                                                       \
-   pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;     \
-   pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;     \
-}
-
-
-/**
- * Calculate a 2^n point complex FFT on 2^ln points.
- * @param z  complex input/output samples
- * @param ln log2(FFT size)
- */
-static void fft(AC3MDCTContext *mdct, IComplex *z, int ln)
-{
-    int j, l, np, np2;
-    int nblocks, nloops;
-    register IComplex *p,*q;
-    int tmp_re, tmp_im;
-
-    np = 1 << ln;
-
-    /* reverse */
-    for (j = 0; j < np; j++) {
-        int k = av_reverse[j] >> (8 - ln);
-        if (k < j)
-            FFSWAP(IComplex, z[k], z[j]);
-    }
-
-    /* pass 0 */
-
-    p = &z[0];
-    j = np >> 1;
-    do {
-        BF(p[0].re, p[0].im, p[1].re, p[1].im,
-           p[0].re, p[0].im, p[1].re, p[1].im);
-        p += 2;
-    } while (--j);
-
-    /* pass 1 */
-
-    p = &z[0];
-    j = np >> 2;
-    do {
-        BF(p[0].re, p[0].im, p[2].re,  p[2].im,
-           p[0].re, p[0].im, p[2].re,  p[2].im);
-        BF(p[1].re, p[1].im, p[3].re,  p[3].im,
-           p[1].re, p[1].im, p[3].im, -p[3].re);
-        p+=4;
-    } while (--j);
-
-    /* pass 2 .. ln-1 */
-
-    nblocks = np >> 3;
-    nloops  =  1 << 2;
-    np2     = np >> 1;
-    do {
-        p = z;
-        q = z + nloops;
-        for (j = 0; j < nblocks; j++) {
-            BF(p->re, p->im, q->re, q->im,
-               p->re, p->im, q->re, q->im);
-            p++;
-            q++;
-            for(l = nblocks; l < np2; l += nblocks) {
-                CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im);
-                BF(p->re, p->im, q->re,  q->im,
-                   p->re, p->im, tmp_re, tmp_im);
-                p++;
-                q++;
-            }
-            p += nloops;
-            q += nloops;
-        }
-        nblocks = nblocks >> 1;
-        nloops  = nloops  << 1;
-    } while (nblocks);
-}
-
-
-/**
- * Calculate a 512-point MDCT
- * @param out 256 output frequency coefficients
- * @param in  512 windowed input audio samples
- */
-static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in)
-{
-    int i, re, im, n, n2, n4;
-    int16_t *rot = mdct->rot_tmp;
-    IComplex *x  = mdct->cplx_tmp;
-
-    n  = 1 << mdct->nbits;
-    n2 = n >> 1;
-    n4 = n >> 2;
-
-    /* shift to simplify computations */
-    for (i = 0; i <n4; i++)
-        rot[i] = -in[i + 3*n4];
-    memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in));
-
-    /* pre rotation */
-    for (i = 0; i < n4; i++) {
-        re =  ((int)rot[   2*i] - (int)rot[ n-1-2*i]) >> 1;
-        im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1;
-        CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]);
-    }
-
-    fft(mdct, x, mdct->nbits - 2);
-
-    /* post rotation */
-    for (i = 0; i < n4; i++) {
-        re = x[i].re;
-        im = x[i].im;
-        CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]);
-    }
-}
-
-
-/**
- * Apply KBD window to input samples prior to MDCT.
- */
-static void apply_window(int16_t *output, const int16_t *input,
-                         const int16_t *window, int n)
-{
-    int i;
-    int n2 = n >> 1;
-
-    for (i = 0; i < n2; i++) {
-        output[i]     = MUL16(input[i],     window[i]) >> 15;
-        output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
-    }
-}
-
-
-/**
- * Calculate the log2() of the maximum absolute value in an array.
- * @param tab input array
- * @param n   number of values in the array
- * @return    log2(max(abs(tab[])))
- */
-static int log2_tab(int16_t *tab, int n)
-{
-    int i, v;
-
-    v = 0;
-    for (i = 0; i < n; i++)
-        v |= abs(tab[i]);
-
-    return av_log2(v);
-}
-
-
-/**
- * Left-shift each value in an array by a specified amount.
- * @param tab    input array
- * @param n      number of values in the array
- * @param lshift left shift amount. a negative value means right shift.
- */
-static void lshift_tab(int16_t *tab, int n, int lshift)
-{
-    int i;
-
-    if (lshift > 0) {
-        for (i = 0; i < n; i++)
-            tab[i] <<= lshift;
-    } else if (lshift < 0) {
-        lshift = -lshift;
-        for (i = 0; i < n; i++)
-            tab[i] >>= lshift;
-    }
-}
-
-
-/**
- * Normalize the input samples to use the maximum available precision.
- * This assumes signed 16-bit input samples. Exponents are reduced by 9 to
- * match the 24-bit internal precision for MDCT coefficients.
- *
- * @return exponent shift
- */
-static int normalize_samples(AC3EncodeContext *s)
-{
-    int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE);
-    v = FFMAX(0, v);
-    lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v);
-    return v - 9;
-}
-
-
-/**
  * Apply the MDCT to input samples to generate frequency coefficients.
  * This applies the KBD window and normalizes the input to reduce precision
  * loss due to fixed-point calculations.
@@ -1982,113 +1688,3 @@ init_fail:
     ac3_encode_close(avctx);
     return ret;
 }
-
-
-#ifdef TEST
-/*************************************************************************/
-/* TEST */
-
-#include "libavutil/lfg.h"
-
-#define MDCT_NBITS 9
-#define MDCT_SAMPLES (1 << MDCT_NBITS)
-#define FN (MDCT_SAMPLES/4)
-
-
-static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg)
-{
-    IComplex in[FN], in1[FN];
-    int k, n, i;
-    float sum_re, sum_im, a;
-
-    for (i = 0; i < FN; i++) {
-        in[i].re = av_lfg_get(lfg) % 65535 - 32767;
-        in[i].im = av_lfg_get(lfg) % 65535 - 32767;
-        in1[i]   = in[i];
-    }
-    fft(mdct, in, 7);
-
-    /* do it by hand */
-    for (k = 0; k < FN; k++) {
-        sum_re = 0;
-        sum_im = 0;
-        for (n = 0; n < FN; n++) {
-            a = -2 * M_PI * (n * k) / FN;
-            sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
-            sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
-        }
-        av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
-               k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
-    }
-}
-
-
-static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg)
-{
-    int16_t input[MDCT_SAMPLES];
-    int32_t output[AC3_MAX_COEFS];
-    float input1[MDCT_SAMPLES];
-    float output1[AC3_MAX_COEFS];
-    float s, a, err, e, emax;
-    int i, k, n;
-
-    for (i = 0; i < MDCT_SAMPLES; i++) {
-        input[i]  = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
-        input1[i] = input[i];
-    }
-
-    mdct512(mdct, output, input);
-
-    /* do it by hand */
-    for (k = 0; k < AC3_MAX_COEFS; k++) {
-        s = 0;
-        for (n = 0; n < MDCT_SAMPLES; n++) {
-            a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
-            s += input1[n] * cos(a);
-        }
-        output1[k] = -2 * s / MDCT_SAMPLES;
-    }
-
-    err  = 0;
-    emax = 0;
-    for (i = 0; i < AC3_MAX_COEFS; i++) {
-        av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
-        e = output[i] - output1[i];
-        if (e > emax)
-            emax = e;
-        err += e * e;
-    }
-    av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
-}
-
-
-int main(void)
-{
-    AVLFG lfg;
-    AC3MDCTContext mdct;
-
-    mdct.avctx = NULL;
-    av_log_set_level(AV_LOG_DEBUG);
-    mdct_init(&mdct, 9);
-
-    fft_test(&mdct, &lfg);
-    mdct_test(&mdct, &lfg);
-
-    return 0;
-}
-#endif /* TEST */
-
-
-AVCodec ac3_encoder = {
-    "ac3",
-    AVMEDIA_TYPE_AUDIO,
-    CODEC_ID_AC3,
-    sizeof(AC3EncodeContext),
-    ac3_encode_init,
-    ac3_encode_frame,
-    ac3_encode_close,
-    NULL,
-    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
-    .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
-    .channel_layouts = ac3_channel_layouts,
-};

Copied and modified: trunk/libavcodec/ac3enc_fixed.c (from r26205, trunk/libavcodec/ac3enc.c)
==============================================================================
--- trunk/libavcodec/ac3enc.c	Mon Jan  3 13:43:48 2011	(r26205, copy source)
+++ trunk/libavcodec/ac3enc_fixed.c	Mon Jan  3 17:08:56 2011	(r26206)
@@ -23,217 +23,17 @@
 
 /**
  * @file
- * The simplest AC-3 encoder.
+ * fixed-point AC-3 encoder.
  */
 
-//#define DEBUG
-
-#include "libavcore/audioconvert.h"
-#include "libavutil/crc.h"
-#include "avcodec.h"
-#include "put_bits.h"
-#include "dsputil.h"
-#include "ac3.h"
-#include "audioconvert.h"
-
-
-/** Maximum number of exponent groups. +1 for separate DC exponent. */
-#define AC3_MAX_EXP_GROUPS 85
-
-/** Scale a float value by 2^bits and convert to an integer. */
-#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
-
-typedef int16_t SampleType;
-typedef int32_t CoefType;
+#include "ac3enc.c"
 
-#define SCALE_COEF(a) (a)
 
 /** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
 #define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767)
 
 
 /**
- * Compex number.
- * Used in fixed-point MDCT calculation.
- */
-typedef struct IComplex {
-    int16_t re,im;
-} IComplex;
-
-typedef struct AC3MDCTContext {
-    const int16_t *window;                  ///< MDCT window function
-    int nbits;                              ///< log2(transform size)
-    int16_t *costab;                        ///< FFT cos table
-    int16_t *sintab;                        ///< FFT sin table
-    int16_t *xcos1;                         ///< MDCT cos table
-    int16_t *xsin1;                         ///< MDCT sin table
-    int16_t *rot_tmp;                       ///< temp buffer for pre-rotated samples
-    IComplex *cplx_tmp;                     ///< temp buffer for complex pre-rotated samples
-} AC3MDCTContext;
-
-/**
- * Data for a single audio block.
- */
-typedef struct AC3Block {
-    uint8_t  **bap;                             ///< bit allocation pointers (bap)
-    CoefType **mdct_coef;                       ///< MDCT coefficients
-    uint8_t  **exp;                             ///< original exponents
-    uint8_t  **grouped_exp;                     ///< grouped exponents
-    int16_t  **psd;                             ///< psd per frequency bin
-    int16_t  **band_psd;                        ///< psd per critical band
-    int16_t  **mask;                            ///< masking curve
-    uint16_t **qmant;                           ///< quantized mantissas
-    uint8_t  exp_strategy[AC3_MAX_CHANNELS];    ///< exponent strategies
-    int8_t   exp_shift[AC3_MAX_CHANNELS];       ///< exponent shift values
-} AC3Block;
-
-/**
- * AC-3 encoder private context.
- */
-typedef struct AC3EncodeContext {
-    PutBitContext pb;                       ///< bitstream writer context
-    DSPContext dsp;
-    AC3MDCTContext mdct;                    ///< MDCT context
-
-    AC3Block blocks[AC3_MAX_BLOCKS];        ///< per-block info
-
-    int bitstream_id;                       ///< bitstream id                           (bsid)
-    int bitstream_mode;                     ///< bitstream mode                         (bsmod)
-
-    int bit_rate;                           ///< target bit rate, in bits-per-second
-    int sample_rate;                        ///< sampling frequency, in Hz
-
-    int frame_size_min;                     ///< minimum frame size in case rounding is necessary
-    int frame_size;                         ///< current frame size in bytes
-    int frame_size_code;                    ///< frame size code                        (frmsizecod)
-    uint16_t crc_inv[2];
-    int bits_written;                       ///< bit count    (used to avg. bitrate)
-    int samples_written;                    ///< sample count (used to avg. bitrate)
-
-    int fbw_channels;                       ///< number of full-bandwidth channels      (nfchans)
-    int channels;                           ///< total number of channels               (nchans)
-    int lfe_on;                             ///< indicates if there is an LFE channel   (lfeon)
-    int lfe_channel;                        ///< channel index of the LFE channel
-    int channel_mode;                       ///< channel mode                           (acmod)
-    const uint8_t *channel_map;             ///< channel map used to reorder channels
-
-    int cutoff;                             ///< user-specified cutoff frequency, in Hz
-    int bandwidth_code[AC3_MAX_CHANNELS];   ///< bandwidth code (0 to 60)               (chbwcod)
-    int nb_coefs[AC3_MAX_CHANNELS];
-
-    /* bitrate allocation control */
-    int slow_gain_code;                     ///< slow gain code                         (sgaincod)
-    int slow_decay_code;                    ///< slow decay code                        (sdcycod)
-    int fast_decay_code;                    ///< fast decay code                        (fdcycod)
-    int db_per_bit_code;                    ///< dB/bit code                            (dbpbcod)
-    int floor_code;                         ///< floor code                             (floorcod)
-    AC3BitAllocParameters bit_alloc;        ///< bit allocation parameters
-    int coarse_snr_offset;                  ///< coarse SNR offsets                     (csnroffst)
-    int fast_gain_code[AC3_MAX_CHANNELS];   ///< fast gain codes (signal-to-mask ratio) (fgaincod)
-    int fine_snr_offset[AC3_MAX_CHANNELS];  ///< fine SNR offsets                       (fsnroffst)
-    int frame_bits_fixed;                   ///< number of non-coefficient bits for fixed parameters
-    int frame_bits;                         ///< all frame bits except exponents and mantissas
-    int exponent_bits;                      ///< number of bits used for exponents
-
-    /* mantissa encoding */
-    int mant1_cnt, mant2_cnt, mant4_cnt;    ///< mantissa counts for bap=1,2,4
-    uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
-
-    SampleType **planar_samples;
-    uint8_t *bap_buffer;
-    uint8_t *bap1_buffer;
-    CoefType *mdct_coef_buffer;
-    uint8_t *exp_buffer;
-    uint8_t *grouped_exp_buffer;
-    int16_t *psd_buffer;
-    int16_t *band_psd_buffer;
-    int16_t *mask_buffer;
-    uint16_t *qmant_buffer;
-
-    DECLARE_ALIGNED(16, SampleType, windowed_samples)[AC3_WINDOW_SIZE];
-} AC3EncodeContext;
-
-
-/**
- * LUT for number of exponent groups.
- * exponent_group_tab[exponent strategy-1][number of coefficients]
- */
-static uint8_t exponent_group_tab[3][256];
-
-
-/**
- * List of supported channel layouts.
- */
-static const int64_t ac3_channel_layouts[] = {
-     AV_CH_LAYOUT_MONO,
-     AV_CH_LAYOUT_STEREO,
-     AV_CH_LAYOUT_2_1,
-     AV_CH_LAYOUT_SURROUND,
-     AV_CH_LAYOUT_2_2,
-     AV_CH_LAYOUT_QUAD,
-     AV_CH_LAYOUT_4POINT0,
-     AV_CH_LAYOUT_5POINT0,
-     AV_CH_LAYOUT_5POINT0_BACK,
-    (AV_CH_LAYOUT_MONO     | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_STEREO   | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_2_1      | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_2_2      | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_QUAD     | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_4POINT0  | AV_CH_LOW_FREQUENCY),
-     AV_CH_LAYOUT_5POINT1,
-     AV_CH_LAYOUT_5POINT1_BACK,
-     0
-};
-
-
-/**
- * Adjust the frame size to make the average bit rate match the target bit rate.
- * This is only needed for 11025, 22050, and 44100 sample rates.
- */
-static void adjust_frame_size(AC3EncodeContext *s)
-{
-    while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
-        s->bits_written    -= s->bit_rate;
-        s->samples_written -= s->sample_rate;
-    }
-    s->frame_size = s->frame_size_min +
-                    2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
-    s->bits_written    += s->frame_size * 8;
-    s->samples_written += AC3_FRAME_SIZE;
-}
-
-
-/**
- * Deinterleave input samples.
- * Channels are reordered from FFmpeg's default order to AC-3 order.
- */
-static void deinterleave_input_samples(AC3EncodeContext *s,
-                                       const SampleType *samples)
-{
-    int ch, i;
-
-    /* deinterleave and remap input samples */
-    for (ch = 0; ch < s->channels; ch++) {
-        const SampleType *sptr;
-        int sinc;
-
-        /* copy last 256 samples of previous frame to the start of the current frame */
-        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE],
-               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
-
-        /* deinterleave */
-        sinc = s->channels;
-        sptr = samples + s->channel_map[ch];
-        for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
-            s->planar_samples[ch][i] = *sptr;
-            sptr += sinc;
-        }
-    }
-}
-
-
-/**
  * Finalize MDCT and free allocated memory.
  */
 static av_cold void mdct_end(AC3MDCTContext *mdct)
@@ -518,1472 +318,6 @@ static int normalize_samples(AC3EncodeCo
 }
 
 
-/**
- * Apply the MDCT to input samples to generate frequency coefficients.
- * This applies the KBD window and normalizes the input to reduce precision
- * loss due to fixed-point calculations.
- */
-static void apply_mdct(AC3EncodeContext *s)
-{
-    int blk, ch;
-
-    for (ch = 0; ch < s->channels; ch++) {
-        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-            AC3Block *block = &s->blocks[blk];
-            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
-
-            apply_window(s->windowed_samples, input_samples, s->mdct.window, AC3_WINDOW_SIZE);
-
-            block->exp_shift[ch] = normalize_samples(s);
-
-            mdct512(&s->mdct, block->mdct_coef[ch], s->windowed_samples);
-        }
-    }
-}
-
-
-/**
- * Initialize exponent tables.
- */
-static av_cold void exponent_init(AC3EncodeContext *s)
-{
-    int i;
-    for (i = 73; i < 256; i++) {
-        exponent_group_tab[0][i] = (i - 1) /  3;
-        exponent_group_tab[1][i] = (i + 2) /  6;
-        exponent_group_tab[2][i] = (i + 8) / 12;
-    }
-    /* LFE */
-    exponent_group_tab[0][7] = 2;
-}
-
-
-/**
- * Extract exponents from the MDCT coefficients.
- * This takes into account the normalization that was done to the input samples
- * by adjusting the exponents by the exponent shift values.
- */
-static void extract_exponents(AC3EncodeContext *s)
-{
-    int blk, ch, i;
-
-    for (ch = 0; ch < s->channels; ch++) {
-        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-            AC3Block *block = &s->blocks[blk];
-            for (i = 0; i < AC3_MAX_COEFS; i++) {
-                int e;
-                int v = abs(SCALE_COEF(block->mdct_coef[ch][i]));
-                if (v == 0)
-                    e = 24;
-                else {
-                    e = 23 - av_log2(v) + block->exp_shift[ch];
-                    if (e >= 24) {
-                        e = 24;
-                        block->mdct_coef[ch][i] = 0;
-                    }
-                }
-                block->exp[ch][i] = e;
-            }
-        }
-    }
-}
-
-
-/**
- * Exponent Difference Threshold.
- * New exponents are sent if their SAD exceed this number.
- */
-#define EXP_DIFF_THRESHOLD 1000
-
-
-/**
- * Calculate exponent strategies for all blocks in a single channel.
- */
-static void compute_exp_strategy_ch(AC3EncodeContext *s, uint8_t *exp_strategy,
-                                    uint8_t **exp)
-{
-    int blk, blk1;
-    int exp_diff;
-
-    /* estimate if the exponent variation & decide if they should be
-       reused in the next frame */
-    exp_strategy[0] = EXP_NEW;
-    for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) {
-        exp_diff = s->dsp.sad[0](NULL, exp[blk], exp[blk-1], 16, 16);
-        if (exp_diff > EXP_DIFF_THRESHOLD)
-            exp_strategy[blk] = EXP_NEW;
-        else
-            exp_strategy[blk] = EXP_REUSE;
-    }
-    emms_c();
-
-    /* now select the encoding strategy type : if exponents are often
-       recoded, we use a coarse encoding */
-    blk = 0;
-    while (blk < AC3_MAX_BLOCKS) {
-        blk1 = blk + 1;
-        while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
-            blk1++;
-        switch (blk1 - blk) {
-        case 1:  exp_strategy[blk] = EXP_D45; break;
-        case 2:
-        case 3:  exp_strategy[blk] = EXP_D25; break;
-        default: exp_strategy[blk] = EXP_D15; break;
-        }
-        blk = blk1;
-    }
-}
-
-
-/**
- * Calculate exponent strategies for all channels.
- * Array arrangement is reversed to simplify the per-channel calculation.
- */
-static void compute_exp_strategy(AC3EncodeContext *s)
-{
-    uint8_t *exp1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
-    uint8_t exp_str1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
-    int ch, blk;
-
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-            exp1[ch][blk]     = s->blocks[blk].exp[ch];
-            exp_str1[ch][blk] = s->blocks[blk].exp_strategy[ch];
-        }
-
-        compute_exp_strategy_ch(s, exp_str1[ch], exp1[ch]);
-
-        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
-            s->blocks[blk].exp_strategy[ch] = exp_str1[ch][blk];
-    }
-    if (s->lfe_on) {
-        ch = s->lfe_channel;
-        s->blocks[0].exp_strategy[ch] = EXP_D15;
-        for (blk = 1; blk < AC3_MAX_BLOCKS; blk++)
-            s->blocks[blk].exp_strategy[ch] = EXP_REUSE;
-    }
-}
-
-
-/**
- * Set each encoded exponent in a block to the minimum of itself and the
- * exponent in the same frequency bin of a following block.
- * exp[i] = min(exp[i], exp1[i]
- */
-static void exponent_min(uint8_t *exp, uint8_t *exp1, int n)
-{
-    int i;
-    for (i = 0; i < n; i++) {
-        if (exp1[i] < exp[i])
-            exp[i] = exp1[i];
-    }
-}
-
-
-/**
- * Update the exponents so that they are the ones the decoder will decode.
- */
-static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy)
-{
-    int nb_groups, i, k;
-
-    nb_groups = exponent_group_tab[exp_strategy-1][nb_exps] * 3;
-
-    /* for each group, compute the minimum exponent */
-    switch(exp_strategy) {
-    case EXP_D25:
-        for (i = 1, k = 1; i <= nb_groups; i++) {
-            uint8_t exp_min = exp[k];
-            if (exp[k+1] < exp_min)
-                exp_min = exp[k+1];
-            exp[i] = exp_min;
-            k += 2;
-        }
-        break;
-    case EXP_D45:
-        for (i = 1, k = 1; i <= nb_groups; i++) {
-            uint8_t exp_min = exp[k];
-            if (exp[k+1] < exp_min)
-                exp_min = exp[k+1];
-            if (exp[k+2] < exp_min)
-                exp_min = exp[k+2];
-            if (exp[k+3] < exp_min)
-                exp_min = exp[k+3];
-            exp[i] = exp_min;
-            k += 4;
-        }
-        break;
-    }
-
-    /* constraint for DC exponent */
-    if (exp[0] > 15)
-        exp[0] = 15;
-
-    /* decrease the delta between each groups to within 2 so that they can be
-       differentially encoded */
-    for (i = 1; i <= nb_groups; i++)
-        exp[i] = FFMIN(exp[i], exp[i-1] + 2);
-    i--;
-    while (--i >= 0)
-        exp[i] = FFMIN(exp[i], exp[i+1] + 2);
-
-    /* now we have the exponent values the decoder will see */
-    switch (exp_strategy) {
-    case EXP_D25:
-        for (i = nb_groups, k = nb_groups * 2; i > 0; i--) {
-            uint8_t exp1 = exp[i];
-            exp[k--] = exp1;
-            exp[k--] = exp1;
-        }
-        break;
-    case EXP_D45:
-        for (i = nb_groups, k = nb_groups * 4; i > 0; i--) {
-            exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i];
-            k -= 4;
-        }
-        break;
-    }
-}
-
-
-/**
- * Encode exponents from original extracted form to what the decoder will see.
- * This copies and groups exponents based on exponent strategy and reduces
- * deltas between adjacent exponent groups so that they can be differentially
- * encoded.
- */
-static void encode_exponents(AC3EncodeContext *s)
-{
-    int blk, blk1, blk2, ch;
-    AC3Block *block, *block1, *block2;
-
-    for (ch = 0; ch < s->channels; ch++) {
-        blk = 0;
-        block = &s->blocks[0];
-        while (blk < AC3_MAX_BLOCKS) {
-            blk1 = blk + 1;
-            block1 = block + 1;
-            /* for the EXP_REUSE case we select the min of the exponents */
-            while (blk1 < AC3_MAX_BLOCKS && block1->exp_strategy[ch] == EXP_REUSE) {
-                exponent_min(block->exp[ch], block1->exp[ch], s->nb_coefs[ch]);
-                blk1++;
-                block1++;
-            }
-            encode_exponents_blk_ch(block->exp[ch], s->nb_coefs[ch],
-                                    block->exp_strategy[ch]);
-            /* copy encoded exponents for reuse case */
-            block2 = block + 1;
-            for (blk2 = blk+1; blk2 < blk1; blk2++, block2++) {
-                memcpy(block2->exp[ch], block->exp[ch],
-                       s->nb_coefs[ch] * sizeof(uint8_t));
-            }
-            blk = blk1;
-            block = block1;
-        }
-    }
-}
-
-
-/**
- * Group exponents.
- * 3 delta-encoded exponents are in each 7-bit group. The number of groups
- * varies depending on exponent strategy and bandwidth.
- */
-static void group_exponents(AC3EncodeContext *s)
-{
-    int blk, ch, i;
-    int group_size, nb_groups, bit_count;
-    uint8_t *p;
-    int delta0, delta1, delta2;
-    int exp0, exp1;
-
-    bit_count = 0;
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        for (ch = 0; ch < s->channels; ch++) {
-            if (block->exp_strategy[ch] == EXP_REUSE) {
-                continue;
-            }
-            group_size = block->exp_strategy[ch] + (block->exp_strategy[ch] == EXP_D45);
-            nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]];
-            bit_count += 4 + (nb_groups * 7);
-            p = block->exp[ch];
-
-            /* DC exponent */
-            exp1 = *p++;
-            block->grouped_exp[ch][0] = exp1;
-
-            /* remaining exponents are delta encoded */
-            for (i = 1; i <= nb_groups; i++) {
-                /* merge three delta in one code */
-                exp0   = exp1;
-                exp1   = p[0];
-                p     += group_size;
-                delta0 = exp1 - exp0 + 2;
-
-                exp0   = exp1;
-                exp1   = p[0];
-                p     += group_size;
-                delta1 = exp1 - exp0 + 2;
-
-                exp0   = exp1;
-                exp1   = p[0];
-                p     += group_size;
-                delta2 = exp1 - exp0 + 2;
-
-                block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
-            }
-        }
-    }
-
-    s->exponent_bits = bit_count;
-}
-
-
-/**
- * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
- * Extract exponents from MDCT coefficients, calculate exponent strategies,
- * and encode final exponents.
- */
-static void process_exponents(AC3EncodeContext *s)
-{
-    extract_exponents(s);
-
-    compute_exp_strategy(s);
-
-    encode_exponents(s);
-
-    group_exponents(s);
-}
-
-
-/**
- * Count frame bits that are based solely on fixed parameters.
- * This only has to be run once when the encoder is initialized.
- */
-static void count_frame_bits_fixed(AC3EncodeContext *s)
-{
-    static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
-    int blk;
-    int frame_bits;
-
-    /* assumptions:
-     *   no dynamic range codes
-     *   no channel coupling
-     *   no rematrixing
-     *   bit allocation parameters do not change between blocks
-     *   SNR offsets do not change between blocks
-     *   no delta bit allocation
-     *   no skipped data
-     *   no auxilliary data
-     */
-
-    /* header size */
-    frame_bits = 65;
-    frame_bits += frame_bits_inc[s->channel_mode];
-
-    /* audio blocks */
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
-        if (s->channel_mode == AC3_CHMODE_STEREO) {
-            frame_bits++; /* rematstr */
-            if (!blk)
-                frame_bits += 4;
-        }
-        frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
-        if (s->lfe_on)
-            frame_bits++; /* lfeexpstr */
-        frame_bits++; /* baie */
-        frame_bits++; /* snr */
-        frame_bits += 2; /* delta / skip */
-    }
-    frame_bits++; /* cplinu for block 0 */
-    /* bit alloc info */
-    /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
-    /* csnroffset[6] */
-    /* (fsnoffset[4] + fgaincod[4]) * c */
-    frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);
-
-    /* auxdatae, crcrsv */
-    frame_bits += 2;
-
-    /* CRC */
-    frame_bits += 16;
-
-    s->frame_bits_fixed = frame_bits;
-}
-
-
-/**
- * Initialize bit allocation.
- * Set default parameter codes and calculate parameter values.
- */
-static void bit_alloc_init(AC3EncodeContext *s)
-{
-    int ch;
-
-    /* init default parameters */
-    s->slow_decay_code = 2;
-    s->fast_decay_code = 1;
-    s->slow_gain_code  = 1;
-    s->db_per_bit_code = 3;
-    s->floor_code      = 4;
-    for (ch = 0; ch < s->channels; ch++)
-        s->fast_gain_code[ch] = 4;
-
-    /* initial snr offset */
-    s->coarse_snr_offset = 40;
-
-    /* compute real values */
-    /* currently none of these values change during encoding, so we can just
-       set them once at initialization */
-    s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
-    s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
-    s->bit_alloc.slow_gain  = ff_ac3_slow_gain_tab[s->slow_gain_code];
-    s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
-    s->bit_alloc.floor      = ff_ac3_floor_tab[s->floor_code];
-
-    count_frame_bits_fixed(s);
-}
-
-
-/**
- * Count the bits used to encode the frame, minus exponents and mantissas.
- * Bits based on fixed parameters have already been counted, so now we just
- * have to add the bits based on parameters that change during encoding.
- */
-static void count_frame_bits(AC3EncodeContext *s)
-{
-    int blk, ch;
-    int frame_bits = 0;
-
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        uint8_t *exp_strategy = s->blocks[blk].exp_strategy;
-        for (ch = 0; ch < s->fbw_channels; ch++) {
-            if (exp_strategy[ch] != EXP_REUSE)
-                frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
-        }
-    }
-    s->frame_bits = s->frame_bits_fixed + frame_bits;
-}
-
-
-/**
- * Calculate the number of bits needed to encode a set of mantissas.
- */
-static int compute_mantissa_size(int mant_cnt[5], uint8_t *bap, int nb_coefs)
-{
-    int bits, b, i;
-
-    bits = 0;
-    for (i = 0; i < nb_coefs; i++) {
-        b = bap[i];
-        if (b <= 4) {
-            // bap=1 to bap=4 will be counted in compute_mantissa_size_final
-            mant_cnt[b]++;
-        } else if (b <= 13) {
-            // bap=5 to bap=13 use (bap-1) bits
-            bits += b - 1;
-        } else {
-            // bap=14 uses 14 bits and bap=15 uses 16 bits
-            bits += (b == 14) ? 14 : 16;
-        }
-    }
-    return bits;
-}
-
-
-/**
- * Finalize the mantissa bit count by adding in the grouped mantissas.
- */
-static int compute_mantissa_size_final(int mant_cnt[5])
-{
-    // bap=1 : 3 mantissas in 5 bits
-    int bits = (mant_cnt[1] / 3) * 5;
-    // bap=2 : 3 mantissas in 7 bits
-    // bap=4 : 2 mantissas in 7 bits
-    bits += ((mant_cnt[2] / 3) + (mant_cnt[4] >> 1)) * 7;
-    // bap=3 : each mantissa is 3 bits
-    bits += mant_cnt[3] * 3;
-    return bits;
-}
-
-
-/**
- * Calculate masking curve based on the final exponents.
- * Also calculate the power spectral densities to use in future calculations.
- */
-static void bit_alloc_masking(AC3EncodeContext *s)
-{
-    int blk, ch;
-
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        for (ch = 0; ch < s->channels; ch++) {
-            /* We only need psd and mask for calculating bap.
-               Since we currently do not calculate bap when exponent
-               strategy is EXP_REUSE we do not need to calculate psd or mask. */
-            if (block->exp_strategy[ch] != EXP_REUSE) {
-                ff_ac3_bit_alloc_calc_psd(block->exp[ch], 0,
-                                          s->nb_coefs[ch],
-                                          block->psd[ch], block->band_psd[ch]);
-                ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
-                                           0, s->nb_coefs[ch],
-                                           ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
-                                           ch == s->lfe_channel,
-                                           DBA_NONE, 0, NULL, NULL, NULL,
-                                           block->mask[ch]);
-            }
-        }
-    }
-}
-
-
-/**
- * Ensure that bap for each block and channel point to the current bap_buffer.
- * They may have been switched during the bit allocation search.
- */
-static void reset_block_bap(AC3EncodeContext *s)
-{
-    int blk, ch;
-    if (s->blocks[0].bap[0] == s->bap_buffer)
-        return;
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        for (ch = 0; ch < s->channels; ch++) {
-            s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)];
-        }
-    }
-}
-
-
-/**
- * Run the bit allocation with a given SNR offset.
- * This calculates the bit allocation pointers that will be used to determine
- * the quantization of each mantissa.
- * @return the number of bits needed for mantissas if the given SNR offset is
- *         is used.
- */
-static int bit_alloc(AC3EncodeContext *s, int snr_offset)
-{
-    int blk, ch;
-    int mantissa_bits;
-    int mant_cnt[5];
-
-    snr_offset = (snr_offset - 240) << 2;
-
-    reset_block_bap(s);
-    mantissa_bits = 0;
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        // initialize grouped mantissa counts. these are set so that they are
-        // padded to the next whole group size when bits are counted in
-        // compute_mantissa_size_final
-        mant_cnt[0] = mant_cnt[3] = 0;
-        mant_cnt[1] = mant_cnt[2] = 2;
-        mant_cnt[4] = 1;
-        for (ch = 0; ch < s->channels; ch++) {
-            /* Currently the only bit allocation parameters which vary across
-               blocks within a frame are the exponent values.  We can take
-               advantage of that by reusing the bit allocation pointers
-               whenever we reuse exponents. */
-            if (block->exp_strategy[ch] == EXP_REUSE) {
-                memcpy(block->bap[ch], s->blocks[blk-1].bap[ch], AC3_MAX_COEFS);
-            } else {
-                ff_ac3_bit_alloc_calc_bap(block->mask[ch], block->psd[ch], 0,
-                                          s->nb_coefs[ch], snr_offset,
-                                          s->bit_alloc.floor, ff_ac3_bap_tab,
-                                          block->bap[ch]);
-            }
-            mantissa_bits += compute_mantissa_size(mant_cnt, block->bap[ch], s->nb_coefs[ch]);
-        }
-        mantissa_bits += compute_mantissa_size_final(mant_cnt);
-    }
-    return mantissa_bits;
-}
-
-
-/**
- * Constant bitrate bit allocation search.
- * Find the largest SNR offset that will allow data to fit in the frame.
- */
-static int cbr_bit_allocation(AC3EncodeContext *s)
-{
-    int ch;
-    int bits_left;
-    int snr_offset, snr_incr;
-
-    bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
-
-    snr_offset = s->coarse_snr_offset << 4;
-
-    /* if previous frame SNR offset was 1023, check if current frame can also
-       use SNR offset of 1023. if so, skip the search. */
-    if ((snr_offset | s->fine_snr_offset[0]) == 1023) {
-        if (bit_alloc(s, 1023) <= bits_left)
-            return 0;
-    }
-
-    while (snr_offset >= 0 &&
-           bit_alloc(s, snr_offset) > bits_left) {
-        snr_offset -= 64;
-    }
-    if (snr_offset < 0)
-        return AVERROR(EINVAL);
-
-    FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
-    for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
-        while (snr_offset + snr_incr <= 1023 &&
-               bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
-            snr_offset += snr_incr;
-            FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
-        }
-    }
-    FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
-    reset_block_bap(s);
-
-    s->coarse_snr_offset = snr_offset >> 4;
-    for (ch = 0; ch < s->channels; ch++)
-        s->fine_snr_offset[ch] = snr_offset & 0xF;
-
-    return 0;
-}
-
-
-/**
- * Downgrade exponent strategies to reduce the bits used by the exponents.
- * This is a fallback for when bit allocation fails with the normal exponent
- * strategies.  Each time this function is run it only downgrades the
- * strategy in 1 channel of 1 block.
- * @return non-zero if downgrade was unsuccessful
- */
-static int downgrade_exponents(AC3EncodeContext *s)
-{
-    int ch, blk;
-
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
-            if (s->blocks[blk].exp_strategy[ch] == EXP_D15) {
-                s->blocks[blk].exp_strategy[ch] = EXP_D25;
-                return 0;
-            }
-        }
-    }
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
-            if (s->blocks[blk].exp_strategy[ch] == EXP_D25) {
-                s->blocks[blk].exp_strategy[ch] = EXP_D45;
-                return 0;
-            }
-        }
-    }
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        /* block 0 cannot reuse exponents, so only downgrade D45 to REUSE if
-           the block number > 0 */
-        for (blk = AC3_MAX_BLOCKS-1; blk > 0; blk--) {
-            if (s->blocks[blk].exp_strategy[ch] > EXP_REUSE) {
-                s->blocks[blk].exp_strategy[ch] = EXP_REUSE;
-                return 0;
-            }
-        }
-    }
-    return -1;
-}
-
-
-/**
- * Reduce the bandwidth to reduce the number of bits used for a given SNR offset.
- * This is a second fallback for when bit allocation still fails after exponents
- * have been downgraded.
- * @return non-zero if bandwidth reduction was unsuccessful
- */
-static int reduce_bandwidth(AC3EncodeContext *s, int min_bw_code)
-{
-    int ch;
-
-    if (s->bandwidth_code[0] > min_bw_code) {
-        for (ch = 0; ch < s->fbw_channels; ch++) {
-            s->bandwidth_code[ch]--;
-            s->nb_coefs[ch] = s->bandwidth_code[ch] * 3 + 73;
-        }
-        return 0;
-    }
-    return -1;
-}
-
-
-/**
- * Perform bit allocation search.
- * Finds the SNR offset value that maximizes quality and fits in the specified
- * frame size.  Output is the SNR offset and a set of bit allocation pointers
- * used to quantize the mantissas.
- */
-static int compute_bit_allocation(AC3EncodeContext *s)
-{
-    int ret;
-
-    count_frame_bits(s);
-
-    bit_alloc_masking(s);
-
-    ret = cbr_bit_allocation(s);
-    while (ret) {
-        /* fallback 1: downgrade exponents */
-        if (!downgrade_exponents(s)) {
-            extract_exponents(s);
-            encode_exponents(s);
-            group_exponents(s);
-            ret = compute_bit_allocation(s);
-            continue;
-        }
-
-        /* fallback 2: reduce bandwidth */
-        /* only do this if the user has not specified a specific cutoff
-           frequency */
-        if (!s->cutoff && !reduce_bandwidth(s, 0)) {
-            process_exponents(s);
-            ret = compute_bit_allocation(s);
-            continue;
-        }
-
-        /* fallbacks were not enough... */
-        break;
-    }
-
-    return ret;
-}
-
-
-/**
- * Symmetric quantization on 'levels' levels.
- */
-static inline int sym_quant(int c, int e, int levels)
-{
-    int v;
-
-    if (c >= 0) {
-        v = (levels * (c << e)) >> 24;
-        v = (v + 1) >> 1;
-        v = (levels >> 1) + v;
-    } else {
-        v = (levels * ((-c) << e)) >> 24;
-        v = (v + 1) >> 1;
-        v = (levels >> 1) - v;
-    }
-    assert(v >= 0 && v < levels);
-    return v;
-}
-
-
-/**
- * Asymmetric quantization on 2^qbits levels.
- */
-static inline int asym_quant(int c, int e, int qbits)
-{
-    int lshift, m, v;
-
-    lshift = e + qbits - 24;
-    if (lshift >= 0)
-        v = c << lshift;
-    else
-        v = c >> (-lshift);
-    /* rounding */
-    v = (v + 1) >> 1;
-    m = (1 << (qbits-1));
-    if (v >= m)
-        v = m - 1;
-    assert(v >= -m);
-    return v & ((1 << qbits)-1);
-}
-
-
-/**
- * Quantize a set of mantissas for a single channel in a single block.
- */
-static void quantize_mantissas_blk_ch(AC3EncodeContext *s, CoefType *mdct_coef,
-                                      int8_t exp_shift, uint8_t *exp,
-                                      uint8_t *bap, uint16_t *qmant, int n)
-{
-    int i;
-
-    for (i = 0; i < n; i++) {
-        int v;
-        int c = SCALE_COEF(mdct_coef[i]);
-        int e = exp[i] - exp_shift;
-        int b = bap[i];
-        switch (b) {
-        case 0:
-            v = 0;
-            break;
-        case 1:
-            v = sym_quant(c, e, 3);
-            switch (s->mant1_cnt) {
-            case 0:
-                s->qmant1_ptr = &qmant[i];
-                v = 9 * v;
-                s->mant1_cnt = 1;
-                break;
-            case 1:
-                *s->qmant1_ptr += 3 * v;
-                s->mant1_cnt = 2;
-                v = 128;
-                break;
-            default:
-                *s->qmant1_ptr += v;
-                s->mant1_cnt = 0;
-                v = 128;
-                break;
-            }
-            break;
-        case 2:
-            v = sym_quant(c, e, 5);
-            switch (s->mant2_cnt) {
-            case 0:
-                s->qmant2_ptr = &qmant[i];
-                v = 25 * v;
-                s->mant2_cnt = 1;
-                break;
-            case 1:
-                *s->qmant2_ptr += 5 * v;
-                s->mant2_cnt = 2;
-                v = 128;
-                break;
-            default:
-                *s->qmant2_ptr += v;
-                s->mant2_cnt = 0;
-                v = 128;
-                break;
-            }
-            break;
-        case 3:
-            v = sym_quant(c, e, 7);
-            break;
-        case 4:
-            v = sym_quant(c, e, 11);
-            switch (s->mant4_cnt) {
-            case 0:
-                s->qmant4_ptr = &qmant[i];
-                v = 11 * v;
-                s->mant4_cnt = 1;
-                break;
-            default:
-                *s->qmant4_ptr += v;
-                s->mant4_cnt = 0;
-                v = 128;
-                break;
-            }
-            break;
-        case 5:
-            v = sym_quant(c, e, 15);
-            break;
-        case 14:
-            v = asym_quant(c, e, 14);
-            break;
-        case 15:
-            v = asym_quant(c, e, 16);
-            break;
-        default:
-            v = asym_quant(c, e, b - 1);
-            break;
-        }
-        qmant[i] = v;
-    }
-}
-
-
-/**
- * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
- */
-static void quantize_mantissas(AC3EncodeContext *s)
-{
-    int blk, ch;
-
-
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        s->mant1_cnt  = s->mant2_cnt  = s->mant4_cnt  = 0;
-        s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL;
-
-        for (ch = 0; ch < s->channels; ch++) {
-            quantize_mantissas_blk_ch(s, block->mdct_coef[ch], block->exp_shift[ch],
-                                      block->exp[ch], block->bap[ch],
-                                      block->qmant[ch], s->nb_coefs[ch]);
-        }
-    }
-}
-
-
-/**
- * Write the AC-3 frame header to the output bitstream.
- */
-static void output_frame_header(AC3EncodeContext *s)
-{
-    put_bits(&s->pb, 16, 0x0b77);   /* frame header */
-    put_bits(&s->pb, 16, 0);        /* crc1: will be filled later */
-    put_bits(&s->pb, 2,  s->bit_alloc.sr_code);
-    put_bits(&s->pb, 6,  s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
-    put_bits(&s->pb, 5,  s->bitstream_id);
-    put_bits(&s->pb, 3,  s->bitstream_mode);
-    put_bits(&s->pb, 3,  s->channel_mode);
-    if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
-        put_bits(&s->pb, 2, 1);     /* XXX -4.5 dB */
-    if (s->channel_mode & 0x04)
-        put_bits(&s->pb, 2, 1);     /* XXX -6 dB */
-    if (s->channel_mode == AC3_CHMODE_STEREO)
-        put_bits(&s->pb, 2, 0);     /* surround not indicated */
-    put_bits(&s->pb, 1, s->lfe_on); /* LFE */
-    put_bits(&s->pb, 5, 31);        /* dialog norm: -31 db */
-    put_bits(&s->pb, 1, 0);         /* no compression control word */
-    put_bits(&s->pb, 1, 0);         /* no lang code */
-    put_bits(&s->pb, 1, 0);         /* no audio production info */
-    put_bits(&s->pb, 1, 0);         /* no copyright */
-    put_bits(&s->pb, 1, 1);         /* original bitstream */
-    put_bits(&s->pb, 1, 0);         /* no time code 1 */
-    put_bits(&s->pb, 1, 0);         /* no time code 2 */
-    put_bits(&s->pb, 1, 0);         /* no additional bit stream info */
-}
-
-
-/**
- * Write one audio block to the output bitstream.
- */
-static void output_audio_block(AC3EncodeContext *s, int block_num)
-{
-    int ch, i, baie, rbnd;
-    AC3Block *block = &s->blocks[block_num];
-
-    /* block switching */
-    for (ch = 0; ch < s->fbw_channels; ch++)
-        put_bits(&s->pb, 1, 0);
-
-    /* dither flags */
-    for (ch = 0; ch < s->fbw_channels; ch++)
-        put_bits(&s->pb, 1, 1);
-
-    /* dynamic range codes */
-    put_bits(&s->pb, 1, 0);
-
-    /* channel coupling */
-    if (!block_num) {
-        put_bits(&s->pb, 1, 1); /* coupling strategy present */
-        put_bits(&s->pb, 1, 0); /* no coupling strategy */
-    } else {
-        put_bits(&s->pb, 1, 0); /* no new coupling strategy */
-    }
-
-    /* stereo rematrixing */
-    if (s->channel_mode == AC3_CHMODE_STEREO) {
-        if (!block_num) {
-            /* first block must define rematrixing (rematstr) */
-            put_bits(&s->pb, 1, 1);
-
-            /* dummy rematrixing rematflg(1:4)=0 */
-            for (rbnd = 0; rbnd < 4; rbnd++)
-                put_bits(&s->pb, 1, 0);
-        } else {
-            /* no matrixing (but should be used in the future) */
-            put_bits(&s->pb, 1, 0);
-        }
-    }
-
-    /* exponent strategy */
-    for (ch = 0; ch < s->fbw_channels; ch++)
-        put_bits(&s->pb, 2, block->exp_strategy[ch]);
-    if (s->lfe_on)
-        put_bits(&s->pb, 1, block->exp_strategy[s->lfe_channel]);
-
-    /* bandwidth */
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        if (block->exp_strategy[ch] != EXP_REUSE)
-            put_bits(&s->pb, 6, s->bandwidth_code[ch]);
-    }
-
-    /* exponents */
-    for (ch = 0; ch < s->channels; ch++) {
-        int nb_groups;
-
-        if (block->exp_strategy[ch] == EXP_REUSE)
-            continue;
-
-        /* DC exponent */
-        put_bits(&s->pb, 4, block->grouped_exp[ch][0]);
-
-        /* exponent groups */
-        nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]];
-        for (i = 1; i <= nb_groups; i++)
-            put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
-
-        /* gain range info */
-        if (ch != s->lfe_channel)
-            put_bits(&s->pb, 2, 0);
-    }
-
-    /* bit allocation info */
-    baie = (block_num == 0);
-    put_bits(&s->pb, 1, baie);
-    if (baie) {
-        put_bits(&s->pb, 2, s->slow_decay_code);
-        put_bits(&s->pb, 2, s->fast_decay_code);
-        put_bits(&s->pb, 2, s->slow_gain_code);
-        put_bits(&s->pb, 2, s->db_per_bit_code);
-        put_bits(&s->pb, 3, s->floor_code);
-    }
-
-    /* snr offset */
-    put_bits(&s->pb, 1, baie);
-    if (baie) {
-        put_bits(&s->pb, 6, s->coarse_snr_offset);
-        for (ch = 0; ch < s->channels; ch++) {
-            put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
-            put_bits(&s->pb, 3, s->fast_gain_code[ch]);
-        }
-    }
-
-    put_bits(&s->pb, 1, 0); /* no delta bit allocation */
-    put_bits(&s->pb, 1, 0); /* no data to skip */
-
-    /* mantissas */
-    for (ch = 0; ch < s->channels; ch++) {
-        int b, q;
-        for (i = 0; i < s->nb_coefs[ch]; i++) {
-            q = block->qmant[ch][i];
-            b = block->bap[ch][i];
-            switch (b) {
-            case 0:                                         break;
-            case 1: if (q != 128) put_bits(&s->pb,   5, q); break;
-            case 2: if (q != 128) put_bits(&s->pb,   7, q); break;
-            case 3:               put_bits(&s->pb,   3, q); break;
-            case 4: if (q != 128) put_bits(&s->pb,   7, q); break;
-            case 14:              put_bits(&s->pb,  14, q); break;
-            case 15:              put_bits(&s->pb,  16, q); break;
-            default:              put_bits(&s->pb, b-1, q); break;
-            }
-        }
-    }
-}
-
-
-/** CRC-16 Polynomial */
-#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
-
-
-static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
-{
-    unsigned int c;
-
-    c = 0;
-    while (a) {
-        if (a & 1)
-            c ^= b;
-        a = a >> 1;
-        b = b << 1;
-        if (b & (1 << 16))
-            b ^= poly;
-    }
-    return c;
-}
-
-
-static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
-{
-    unsigned int r;
-    r = 1;
-    while (n) {
-        if (n & 1)
-            r = mul_poly(r, a, poly);
-        a = mul_poly(a, a, poly);
-        n >>= 1;
-    }
-    return r;
-}
-
-
-/**
- * Fill the end of the frame with 0's and compute the two CRCs.
- */
-static void output_frame_end(AC3EncodeContext *s)
-{
-    const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
-    int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
-    uint8_t *frame;
-
-    frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
-
-    /* pad the remainder of the frame with zeros */
-    flush_put_bits(&s->pb);
-    frame = s->pb.buf;
-    pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
-    assert(pad_bytes >= 0);
-    if (pad_bytes > 0)
-        memset(put_bits_ptr(&s->pb), 0, pad_bytes);
-
-    /* compute crc1 */
-    /* this is not so easy because it is at the beginning of the data... */
-    crc1    = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
-    crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
-    crc1    = mul_poly(crc_inv, crc1, CRC16_POLY);
-    AV_WB16(frame + 2, crc1);
-
-    /* compute crc2 */
-    crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
-                          s->frame_size - frame_size_58 - 3);
-    crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
-    /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
-    if (crc2 == 0x770B) {
-        frame[s->frame_size - 3] ^= 0x1;
-        crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
-    }
-    crc2 = av_bswap16(crc2);
-    AV_WB16(frame + s->frame_size - 2, crc2);
-}
-
-
-/**
- * Write the frame to the output bitstream.
- */
-static void output_frame(AC3EncodeContext *s, unsigned char *frame)
-{
-    int blk;
-
-    init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
-
-    output_frame_header(s);
-
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
-        output_audio_block(s, blk);
-
-    output_frame_end(s);
-}
-
-
-/**
- * Encode a single AC-3 frame.
- */
-static int ac3_encode_frame(AVCodecContext *avctx, unsigned char *frame,
-                            int buf_size, void *data)
-{
-    AC3EncodeContext *s = avctx->priv_data;
-    const SampleType *samples = data;
-    int ret;
-
-    if (s->bit_alloc.sr_code == 1)
-        adjust_frame_size(s);
-
-    deinterleave_input_samples(s, samples);
-
-    apply_mdct(s);
-
-    process_exponents(s);
-
-    ret = compute_bit_allocation(s);
-    if (ret) {
-        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
-        return ret;
-    }
-
-    quantize_mantissas(s);
-
-    output_frame(s, frame);
-
-    return s->frame_size;
-}
-
-
-/**
- * Finalize encoding and free any memory allocated by the encoder.
- */
-static av_cold int ac3_encode_close(AVCodecContext *avctx)
-{
-    int blk, ch;
-    AC3EncodeContext *s = avctx->priv_data;
-
-    for (ch = 0; ch < s->channels; ch++)
-        av_freep(&s->planar_samples[ch]);
-    av_freep(&s->planar_samples);
-    av_freep(&s->bap_buffer);
-    av_freep(&s->bap1_buffer);
-    av_freep(&s->mdct_coef_buffer);
-    av_freep(&s->exp_buffer);
-    av_freep(&s->grouped_exp_buffer);
-    av_freep(&s->psd_buffer);
-    av_freep(&s->band_psd_buffer);
-    av_freep(&s->mask_buffer);
-    av_freep(&s->qmant_buffer);
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        av_freep(&block->bap);
-        av_freep(&block->mdct_coef);
-        av_freep(&block->exp);
-        av_freep(&block->grouped_exp);
-        av_freep(&block->psd);
-        av_freep(&block->band_psd);
-        av_freep(&block->mask);
-        av_freep(&block->qmant);
-    }
-
-    mdct_end(&s->mdct);
-
-    av_freep(&avctx->coded_frame);
-    return 0;
-}
-
-
-/**
- * Set channel information during initialization.
- */
-static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
-                                    int64_t *channel_layout)
-{
-    int ch_layout;
-
-    if (channels < 1 || channels > AC3_MAX_CHANNELS)
-        return AVERROR(EINVAL);
-    if ((uint64_t)*channel_layout > 0x7FF)
-        return AVERROR(EINVAL);
-    ch_layout = *channel_layout;
-    if (!ch_layout)
-        ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
-    if (av_get_channel_layout_nb_channels(ch_layout) != channels)
-        return AVERROR(EINVAL);
-
-    s->lfe_on       = !!(ch_layout & AV_CH_LOW_FREQUENCY);
-    s->channels     = channels;
-    s->fbw_channels = channels - s->lfe_on;
-    s->lfe_channel  = s->lfe_on ? s->fbw_channels : -1;
-    if (s->lfe_on)
-        ch_layout -= AV_CH_LOW_FREQUENCY;
-
-    switch (ch_layout) {
-    case AV_CH_LAYOUT_MONO:           s->channel_mode = AC3_CHMODE_MONO;   break;
-    case AV_CH_LAYOUT_STEREO:         s->channel_mode = AC3_CHMODE_STEREO; break;
-    case AV_CH_LAYOUT_SURROUND:       s->channel_mode = AC3_CHMODE_3F;     break;
-    case AV_CH_LAYOUT_2_1:            s->channel_mode = AC3_CHMODE_2F1R;   break;
-    case AV_CH_LAYOUT_4POINT0:        s->channel_mode = AC3_CHMODE_3F1R;   break;
-    case AV_CH_LAYOUT_QUAD:
-    case AV_CH_LAYOUT_2_2:            s->channel_mode = AC3_CHMODE_2F2R;   break;
-    case AV_CH_LAYOUT_5POINT0:
-    case AV_CH_LAYOUT_5POINT0_BACK:   s->channel_mode = AC3_CHMODE_3F2R;   break;
-    default:
-        return AVERROR(EINVAL);
-    }
-
-    s->channel_map  = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
-    *channel_layout = ch_layout;
-    if (s->lfe_on)
-        *channel_layout |= AV_CH_LOW_FREQUENCY;
-
-    return 0;
-}
-
-
-static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s)
-{
-    int i, ret;
-
-    /* validate channel layout */
-    if (!avctx->channel_layout) {
-        av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
-                                      "encoder will guess the layout, but it "
-                                      "might be incorrect.\n");
-    }
-    ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
-    if (ret) {
-        av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
-        return ret;
-    }
-
-    /* validate sample rate */
-    for (i = 0; i < 9; i++) {
-        if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate)
-            break;
-    }
-    if (i == 9) {
-        av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
-        return AVERROR(EINVAL);
-    }
-    s->sample_rate        = avctx->sample_rate;
-    s->bit_alloc.sr_shift = i % 3;
-    s->bit_alloc.sr_code  = i / 3;
-
-    /* validate bit rate */
-    for (i = 0; i < 19; i++) {
-        if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate)
-            break;
-    }
-    if (i == 19) {
-        av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
-        return AVERROR(EINVAL);
-    }
-    s->bit_rate        = avctx->bit_rate;
-    s->frame_size_code = i << 1;
-
-    /* validate cutoff */
-    if (avctx->cutoff < 0) {
-        av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
-        return AVERROR(EINVAL);
-    }
-    s->cutoff = avctx->cutoff;
-    if (s->cutoff > (s->sample_rate >> 1))
-        s->cutoff = s->sample_rate >> 1;
-
-    return 0;
-}
-
-
-/**
- * Set bandwidth for all channels.
- * The user can optionally supply a cutoff frequency. Otherwise an appropriate
- * default value will be used.
- */
-static av_cold void set_bandwidth(AC3EncodeContext *s)
-{
-    int ch, bw_code;
-
-    if (s->cutoff) {
-        /* calculate bandwidth based on user-specified cutoff frequency */
-        int fbw_coeffs;
-        fbw_coeffs     = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
-        bw_code        = av_clip((fbw_coeffs - 73) / 3, 0, 60);
-    } else {
-        /* use default bandwidth setting */
-        /* XXX: should compute the bandwidth according to the frame
-           size, so that we avoid annoying high frequency artifacts */
-        bw_code = 50;
-    }
-
-    /* set number of coefficients for each channel */
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        s->bandwidth_code[ch] = bw_code;
-        s->nb_coefs[ch]       = bw_code * 3 + 73;
-    }
-    if (s->lfe_on)
-        s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */
-}
-
-
-static av_cold int allocate_buffers(AVCodecContext *avctx)
-{
-    int blk, ch;
-    AC3EncodeContext *s = avctx->priv_data;
-
-    FF_ALLOC_OR_GOTO(avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
-                     alloc_fail);
-    for (ch = 0; ch < s->channels; ch++) {
-        FF_ALLOCZ_OR_GOTO(avctx, s->planar_samples[ch],
-                          (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
-                          alloc_fail);
-    }
-    FF_ALLOC_OR_GOTO(avctx, s->bap_buffer,  AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->bap_buffer),  alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->bap1_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->mdct_coef_buffer, AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->mdct_coef_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->exp_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, AC3_MAX_BLOCKS * s->channels *
-                     128 * sizeof(*s->grouped_exp_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->psd_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, AC3_MAX_BLOCKS * s->channels *
-                     64 * sizeof(*s->band_psd_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, AC3_MAX_BLOCKS * s->channels *
-                     64 * sizeof(*s->mask_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->qmant_buffer), alloc_fail);
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        FF_ALLOC_OR_GOTO(avctx, block->bap, s->channels * sizeof(*block->bap),
-                         alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, s->channels * sizeof(*block->mdct_coef),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->exp, s->channels * sizeof(*block->exp),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, s->channels * sizeof(*block->grouped_exp),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->psd, s->channels * sizeof(*block->psd),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, s->channels * sizeof(*block->band_psd),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->mask, s->channels * sizeof(*block->mask),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->qmant, s->channels * sizeof(*block->qmant),
-                          alloc_fail);
-
-        for (ch = 0; ch < s->channels; ch++) {
-            block->bap[ch]         = &s->bap_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
-            block->mdct_coef[ch]   = &s->mdct_coef_buffer  [AC3_MAX_COEFS * (blk * s->channels + ch)];
-            block->exp[ch]         = &s->exp_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
-            block->grouped_exp[ch] = &s->grouped_exp_buffer[128           * (blk * s->channels + ch)];
-            block->psd[ch]         = &s->psd_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
-            block->band_psd[ch]    = &s->band_psd_buffer   [64            * (blk * s->channels + ch)];
-            block->mask[ch]        = &s->mask_buffer       [64            * (blk * s->channels + ch)];
-            block->qmant[ch]       = &s->qmant_buffer      [AC3_MAX_COEFS * (blk * s->channels + ch)];
-        }
-    }
-
-    return 0;
-alloc_fail:
-    return AVERROR(ENOMEM);
-}
-
-
-/**
- * Initialize the encoder.
- */
-static av_cold int ac3_encode_init(AVCodecContext *avctx)
-{
-    AC3EncodeContext *s = avctx->priv_data;
-    int ret, frame_size_58;
-
-    avctx->frame_size = AC3_FRAME_SIZE;
-
-    ac3_common_init();
-
-    ret = validate_options(avctx, s);
-    if (ret)
-        return ret;
-
-    s->bitstream_id   = 8 + s->bit_alloc.sr_shift;
-    s->bitstream_mode = 0; /* complete main audio service */
-
-    s->frame_size_min  = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
-    s->bits_written    = 0;
-    s->samples_written = 0;
-    s->frame_size      = s->frame_size_min;
-
-    /* calculate crc_inv for both possible frame sizes */
-    frame_size_58 = (( s->frame_size    >> 2) + ( s->frame_size    >> 4)) << 1;
-    s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
-    if (s->bit_alloc.sr_code == 1) {
-        frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
-        s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
-    }
-
-    set_bandwidth(s);
-
-    exponent_init(s);
-
-    bit_alloc_init(s);
-
-    ret = mdct_init(avctx, &s->mdct, 9);
-    if (ret)
-        goto init_fail;
-
-    ret = allocate_buffers(avctx);
-    if (ret)
-        goto init_fail;
-
-    avctx->coded_frame= avcodec_alloc_frame();
-
-    dsputil_init(&s->dsp, avctx);
-
-    return 0;
-init_fail:
-    ac3_encode_close(avctx);
-    return ret;
-}
-
-
 #ifdef TEST
 /*************************************************************************/
 /* TEST */

Copied and modified: trunk/libavcodec/ac3enc_fixed.h (from r26205, trunk/libavcodec/ac3enc.c)
==============================================================================
--- trunk/libavcodec/ac3enc.c	Mon Jan  3 13:43:48 2011	(r26205, copy source)
+++ trunk/libavcodec/ac3enc_fixed.h	Mon Jan  3 17:08:56 2011	(r26206)
@@ -23,34 +23,20 @@
 
 /**
  * @file
- * The simplest AC-3 encoder.
+ * fixed-point AC-3 encoder header.
  */
 
-//#define DEBUG
-
-#include "libavcore/audioconvert.h"
-#include "libavutil/crc.h"
-#include "avcodec.h"
-#include "put_bits.h"
-#include "dsputil.h"
-#include "ac3.h"
-#include "audioconvert.h"
-
+#ifndef AVCODEC_AC3ENC_FIXED_H
+#define AVCODEC_AC3ENC_FIXED_H
 
-/** Maximum number of exponent groups. +1 for separate DC exponent. */
-#define AC3_MAX_EXP_GROUPS 85
+#include <stdint.h>
 
-/** Scale a float value by 2^bits and convert to an integer. */
-#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))
 
 typedef int16_t SampleType;
 typedef int32_t CoefType;
 
 #define SCALE_COEF(a) (a)
 
-/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
-#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767)
-
 
 /**
  * Compex number.
@@ -71,2024 +57,4 @@ typedef struct AC3MDCTContext {
     IComplex *cplx_tmp;                     ///< temp buffer for complex pre-rotated samples
 } AC3MDCTContext;
 
-/**
- * Data for a single audio block.
- */
-typedef struct AC3Block {
-    uint8_t  **bap;                             ///< bit allocation pointers (bap)
-    CoefType **mdct_coef;                       ///< MDCT coefficients
-    uint8_t  **exp;                             ///< original exponents
-    uint8_t  **grouped_exp;                     ///< grouped exponents
-    int16_t  **psd;                             ///< psd per frequency bin
-    int16_t  **band_psd;                        ///< psd per critical band
-    int16_t  **mask;                            ///< masking curve
-    uint16_t **qmant;                           ///< quantized mantissas
-    uint8_t  exp_strategy[AC3_MAX_CHANNELS];    ///< exponent strategies
-    int8_t   exp_shift[AC3_MAX_CHANNELS];       ///< exponent shift values
-} AC3Block;
-
-/**
- * AC-3 encoder private context.
- */
-typedef struct AC3EncodeContext {
-    PutBitContext pb;                       ///< bitstream writer context
-    DSPContext dsp;
-    AC3MDCTContext mdct;                    ///< MDCT context
-
-    AC3Block blocks[AC3_MAX_BLOCKS];        ///< per-block info
-
-    int bitstream_id;                       ///< bitstream id                           (bsid)
-    int bitstream_mode;                     ///< bitstream mode                         (bsmod)
-
-    int bit_rate;                           ///< target bit rate, in bits-per-second
-    int sample_rate;                        ///< sampling frequency, in Hz
-
-    int frame_size_min;                     ///< minimum frame size in case rounding is necessary
-    int frame_size;                         ///< current frame size in bytes
-    int frame_size_code;                    ///< frame size code                        (frmsizecod)
-    uint16_t crc_inv[2];
-    int bits_written;                       ///< bit count    (used to avg. bitrate)
-    int samples_written;                    ///< sample count (used to avg. bitrate)
-
-    int fbw_channels;                       ///< number of full-bandwidth channels      (nfchans)
-    int channels;                           ///< total number of channels               (nchans)
-    int lfe_on;                             ///< indicates if there is an LFE channel   (lfeon)
-    int lfe_channel;                        ///< channel index of the LFE channel
-    int channel_mode;                       ///< channel mode                           (acmod)
-    const uint8_t *channel_map;             ///< channel map used to reorder channels
-
-    int cutoff;                             ///< user-specified cutoff frequency, in Hz
-    int bandwidth_code[AC3_MAX_CHANNELS];   ///< bandwidth code (0 to 60)               (chbwcod)
-    int nb_coefs[AC3_MAX_CHANNELS];
-
-    /* bitrate allocation control */
-    int slow_gain_code;                     ///< slow gain code                         (sgaincod)
-    int slow_decay_code;                    ///< slow decay code                        (sdcycod)
-    int fast_decay_code;                    ///< fast decay code                        (fdcycod)
-    int db_per_bit_code;                    ///< dB/bit code                            (dbpbcod)
-    int floor_code;                         ///< floor code                             (floorcod)
-    AC3BitAllocParameters bit_alloc;        ///< bit allocation parameters
-    int coarse_snr_offset;                  ///< coarse SNR offsets                     (csnroffst)
-    int fast_gain_code[AC3_MAX_CHANNELS];   ///< fast gain codes (signal-to-mask ratio) (fgaincod)
-    int fine_snr_offset[AC3_MAX_CHANNELS];  ///< fine SNR offsets                       (fsnroffst)
-    int frame_bits_fixed;                   ///< number of non-coefficient bits for fixed parameters
-    int frame_bits;                         ///< all frame bits except exponents and mantissas
-    int exponent_bits;                      ///< number of bits used for exponents
-
-    /* mantissa encoding */
-    int mant1_cnt, mant2_cnt, mant4_cnt;    ///< mantissa counts for bap=1,2,4
-    uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
-
-    SampleType **planar_samples;
-    uint8_t *bap_buffer;
-    uint8_t *bap1_buffer;
-    CoefType *mdct_coef_buffer;
-    uint8_t *exp_buffer;
-    uint8_t *grouped_exp_buffer;
-    int16_t *psd_buffer;
-    int16_t *band_psd_buffer;
-    int16_t *mask_buffer;
-    uint16_t *qmant_buffer;
-
-    DECLARE_ALIGNED(16, SampleType, windowed_samples)[AC3_WINDOW_SIZE];
-} AC3EncodeContext;
-
-
-/**
- * LUT for number of exponent groups.
- * exponent_group_tab[exponent strategy-1][number of coefficients]
- */
-static uint8_t exponent_group_tab[3][256];
-
-
-/**
- * List of supported channel layouts.
- */
-static const int64_t ac3_channel_layouts[] = {
-     AV_CH_LAYOUT_MONO,
-     AV_CH_LAYOUT_STEREO,
-     AV_CH_LAYOUT_2_1,
-     AV_CH_LAYOUT_SURROUND,
-     AV_CH_LAYOUT_2_2,
-     AV_CH_LAYOUT_QUAD,
-     AV_CH_LAYOUT_4POINT0,
-     AV_CH_LAYOUT_5POINT0,
-     AV_CH_LAYOUT_5POINT0_BACK,
-    (AV_CH_LAYOUT_MONO     | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_STEREO   | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_2_1      | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_2_2      | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_QUAD     | AV_CH_LOW_FREQUENCY),
-    (AV_CH_LAYOUT_4POINT0  | AV_CH_LOW_FREQUENCY),
-     AV_CH_LAYOUT_5POINT1,
-     AV_CH_LAYOUT_5POINT1_BACK,
-     0
-};
-
-
-/**
- * Adjust the frame size to make the average bit rate match the target bit rate.
- * This is only needed for 11025, 22050, and 44100 sample rates.
- */
-static void adjust_frame_size(AC3EncodeContext *s)
-{
-    while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
-        s->bits_written    -= s->bit_rate;
-        s->samples_written -= s->sample_rate;
-    }
-    s->frame_size = s->frame_size_min +
-                    2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
-    s->bits_written    += s->frame_size * 8;
-    s->samples_written += AC3_FRAME_SIZE;
-}
-
-
-/**
- * Deinterleave input samples.
- * Channels are reordered from FFmpeg's default order to AC-3 order.
- */
-static void deinterleave_input_samples(AC3EncodeContext *s,
-                                       const SampleType *samples)
-{
-    int ch, i;
-
-    /* deinterleave and remap input samples */
-    for (ch = 0; ch < s->channels; ch++) {
-        const SampleType *sptr;
-        int sinc;
-
-        /* copy last 256 samples of previous frame to the start of the current frame */
-        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE],
-               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
-
-        /* deinterleave */
-        sinc = s->channels;
-        sptr = samples + s->channel_map[ch];
-        for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
-            s->planar_samples[ch][i] = *sptr;
-            sptr += sinc;
-        }
-    }
-}
-
-
-/**
- * Finalize MDCT and free allocated memory.
- */
-static av_cold void mdct_end(AC3MDCTContext *mdct)
-{
-    mdct->nbits = 0;
-    av_freep(&mdct->costab);
-    av_freep(&mdct->sintab);
-    av_freep(&mdct->xcos1);
-    av_freep(&mdct->xsin1);
-    av_freep(&mdct->rot_tmp);
-    av_freep(&mdct->cplx_tmp);
-}
-
-
-/**
- * Initialize FFT tables.
- * @param ln log2(FFT size)
- */
-static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln)
-{
-    int i, n, n2;
-    float alpha;
-
-    n  = 1 << ln;
-    n2 = n >> 1;
-
-    FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail);
-
-    for (i = 0; i < n2; i++) {
-        alpha     = 2.0 * M_PI * i / n;
-        mdct->costab[i] = FIX15(cos(alpha));
-        mdct->sintab[i] = FIX15(sin(alpha));
-    }
-
-    return 0;
-fft_alloc_fail:
-    mdct_end(mdct);
-    return AVERROR(ENOMEM);
-}
-
-
-/**
- * Initialize MDCT tables.
- * @param nbits log2(MDCT size)
- */
-static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
-                             int nbits)
-{
-    int i, n, n4, ret;
-
-    n  = 1 << nbits;
-    n4 = n >> 2;
-
-    mdct->nbits = nbits;
-
-    ret = fft_init(avctx, mdct, nbits - 2);
-    if (ret)
-        return ret;
-
-    mdct->window = ff_ac3_window;
-
-    FF_ALLOC_OR_GOTO(avctx, mdct->xcos1,    n4 * sizeof(*mdct->xcos1),    mdct_alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, mdct->xsin1,    n4 * sizeof(*mdct->xsin1),    mdct_alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp,  n  * sizeof(*mdct->rot_tmp),  mdct_alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail);
-
-    for (i = 0; i < n4; i++) {
-        float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
-        mdct->xcos1[i] = FIX15(-cos(alpha));
-        mdct->xsin1[i] = FIX15(-sin(alpha));
-    }
-
-    return 0;
-mdct_alloc_fail:
-    mdct_end(mdct);
-    return AVERROR(ENOMEM);
-}
-
-
-/** Butterfly op */
-#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1)  \
-{                                                       \
-  int ax, ay, bx, by;                                   \
-  bx  = pre1;                                           \
-  by  = pim1;                                           \
-  ax  = qre1;                                           \
-  ay  = qim1;                                           \
-  pre = (bx + ax) >> 1;                                 \
-  pim = (by + ay) >> 1;                                 \
-  qre = (bx - ax) >> 1;                                 \
-  qim = (by - ay) >> 1;                                 \
-}
-
-
-/** Complex multiply */
-#define CMUL(pre, pim, are, aim, bre, bim)              \
-{                                                       \
-   pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;     \
-   pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;     \
-}
-
-
-/**
- * Calculate a 2^n point complex FFT on 2^ln points.
- * @param z  complex input/output samples
- * @param ln log2(FFT size)
- */
-static void fft(AC3MDCTContext *mdct, IComplex *z, int ln)
-{
-    int j, l, np, np2;
-    int nblocks, nloops;
-    register IComplex *p,*q;
-    int tmp_re, tmp_im;
-
-    np = 1 << ln;
-
-    /* reverse */
-    for (j = 0; j < np; j++) {
-        int k = av_reverse[j] >> (8 - ln);
-        if (k < j)
-            FFSWAP(IComplex, z[k], z[j]);
-    }
-
-    /* pass 0 */
-
-    p = &z[0];
-    j = np >> 1;
-    do {
-        BF(p[0].re, p[0].im, p[1].re, p[1].im,
-           p[0].re, p[0].im, p[1].re, p[1].im);
-        p += 2;
-    } while (--j);
-
-    /* pass 1 */
-
-    p = &z[0];
-    j = np >> 2;
-    do {
-        BF(p[0].re, p[0].im, p[2].re,  p[2].im,
-           p[0].re, p[0].im, p[2].re,  p[2].im);
-        BF(p[1].re, p[1].im, p[3].re,  p[3].im,
-           p[1].re, p[1].im, p[3].im, -p[3].re);
-        p+=4;
-    } while (--j);
-
-    /* pass 2 .. ln-1 */
-
-    nblocks = np >> 3;
-    nloops  =  1 << 2;
-    np2     = np >> 1;
-    do {
-        p = z;
-        q = z + nloops;
-        for (j = 0; j < nblocks; j++) {
-            BF(p->re, p->im, q->re, q->im,
-               p->re, p->im, q->re, q->im);
-            p++;
-            q++;
-            for(l = nblocks; l < np2; l += nblocks) {
-                CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im);
-                BF(p->re, p->im, q->re,  q->im,
-                   p->re, p->im, tmp_re, tmp_im);
-                p++;
-                q++;
-            }
-            p += nloops;
-            q += nloops;
-        }
-        nblocks = nblocks >> 1;
-        nloops  = nloops  << 1;
-    } while (nblocks);
-}
-
-
-/**
- * Calculate a 512-point MDCT
- * @param out 256 output frequency coefficients
- * @param in  512 windowed input audio samples
- */
-static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in)
-{
-    int i, re, im, n, n2, n4;
-    int16_t *rot = mdct->rot_tmp;
-    IComplex *x  = mdct->cplx_tmp;
-
-    n  = 1 << mdct->nbits;
-    n2 = n >> 1;
-    n4 = n >> 2;
-
-    /* shift to simplify computations */
-    for (i = 0; i <n4; i++)
-        rot[i] = -in[i + 3*n4];
-    memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in));
-
-    /* pre rotation */
-    for (i = 0; i < n4; i++) {
-        re =  ((int)rot[   2*i] - (int)rot[ n-1-2*i]) >> 1;
-        im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1;
-        CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]);
-    }
-
-    fft(mdct, x, mdct->nbits - 2);
-
-    /* post rotation */
-    for (i = 0; i < n4; i++) {
-        re = x[i].re;
-        im = x[i].im;
-        CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]);
-    }
-}
-
-
-/**
- * Apply KBD window to input samples prior to MDCT.
- */
-static void apply_window(int16_t *output, const int16_t *input,
-                         const int16_t *window, int n)
-{
-    int i;
-    int n2 = n >> 1;
-
-    for (i = 0; i < n2; i++) {
-        output[i]     = MUL16(input[i],     window[i]) >> 15;
-        output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
-    }
-}
-
-
-/**
- * Calculate the log2() of the maximum absolute value in an array.
- * @param tab input array
- * @param n   number of values in the array
- * @return    log2(max(abs(tab[])))
- */
-static int log2_tab(int16_t *tab, int n)
-{
-    int i, v;
-
-    v = 0;
-    for (i = 0; i < n; i++)
-        v |= abs(tab[i]);
-
-    return av_log2(v);
-}
-
-
-/**
- * Left-shift each value in an array by a specified amount.
- * @param tab    input array
- * @param n      number of values in the array
- * @param lshift left shift amount. a negative value means right shift.
- */
-static void lshift_tab(int16_t *tab, int n, int lshift)
-{
-    int i;
-
-    if (lshift > 0) {
-        for (i = 0; i < n; i++)
-            tab[i] <<= lshift;
-    } else if (lshift < 0) {
-        lshift = -lshift;
-        for (i = 0; i < n; i++)
-            tab[i] >>= lshift;
-    }
-}
-
-
-/**
- * Normalize the input samples to use the maximum available precision.
- * This assumes signed 16-bit input samples. Exponents are reduced by 9 to
- * match the 24-bit internal precision for MDCT coefficients.
- *
- * @return exponent shift
- */
-static int normalize_samples(AC3EncodeContext *s)
-{
-    int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE);
-    v = FFMAX(0, v);
-    lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v);
-    return v - 9;
-}
-
-
-/**
- * Apply the MDCT to input samples to generate frequency coefficients.
- * This applies the KBD window and normalizes the input to reduce precision
- * loss due to fixed-point calculations.
- */
-static void apply_mdct(AC3EncodeContext *s)
-{
-    int blk, ch;
-
-    for (ch = 0; ch < s->channels; ch++) {
-        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-            AC3Block *block = &s->blocks[blk];
-            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
-
-            apply_window(s->windowed_samples, input_samples, s->mdct.window, AC3_WINDOW_SIZE);
-
-            block->exp_shift[ch] = normalize_samples(s);
-
-            mdct512(&s->mdct, block->mdct_coef[ch], s->windowed_samples);
-        }
-    }
-}
-
-
-/**
- * Initialize exponent tables.
- */
-static av_cold void exponent_init(AC3EncodeContext *s)
-{
-    int i;
-    for (i = 73; i < 256; i++) {
-        exponent_group_tab[0][i] = (i - 1) /  3;
-        exponent_group_tab[1][i] = (i + 2) /  6;
-        exponent_group_tab[2][i] = (i + 8) / 12;
-    }
-    /* LFE */
-    exponent_group_tab[0][7] = 2;
-}
-
-
-/**
- * Extract exponents from the MDCT coefficients.
- * This takes into account the normalization that was done to the input samples
- * by adjusting the exponents by the exponent shift values.
- */
-static void extract_exponents(AC3EncodeContext *s)
-{
-    int blk, ch, i;
-
-    for (ch = 0; ch < s->channels; ch++) {
-        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-            AC3Block *block = &s->blocks[blk];
-            for (i = 0; i < AC3_MAX_COEFS; i++) {
-                int e;
-                int v = abs(SCALE_COEF(block->mdct_coef[ch][i]));
-                if (v == 0)
-                    e = 24;
-                else {
-                    e = 23 - av_log2(v) + block->exp_shift[ch];
-                    if (e >= 24) {
-                        e = 24;
-                        block->mdct_coef[ch][i] = 0;
-                    }
-                }
-                block->exp[ch][i] = e;
-            }
-        }
-    }
-}
-
-
-/**
- * Exponent Difference Threshold.
- * New exponents are sent if their SAD exceed this number.
- */
-#define EXP_DIFF_THRESHOLD 1000
-
-
-/**
- * Calculate exponent strategies for all blocks in a single channel.
- */
-static void compute_exp_strategy_ch(AC3EncodeContext *s, uint8_t *exp_strategy,
-                                    uint8_t **exp)
-{
-    int blk, blk1;
-    int exp_diff;
-
-    /* estimate if the exponent variation & decide if they should be
-       reused in the next frame */
-    exp_strategy[0] = EXP_NEW;
-    for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) {
-        exp_diff = s->dsp.sad[0](NULL, exp[blk], exp[blk-1], 16, 16);
-        if (exp_diff > EXP_DIFF_THRESHOLD)
-            exp_strategy[blk] = EXP_NEW;
-        else
-            exp_strategy[blk] = EXP_REUSE;
-    }
-    emms_c();
-
-    /* now select the encoding strategy type : if exponents are often
-       recoded, we use a coarse encoding */
-    blk = 0;
-    while (blk < AC3_MAX_BLOCKS) {
-        blk1 = blk + 1;
-        while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
-            blk1++;
-        switch (blk1 - blk) {
-        case 1:  exp_strategy[blk] = EXP_D45; break;
-        case 2:
-        case 3:  exp_strategy[blk] = EXP_D25; break;
-        default: exp_strategy[blk] = EXP_D15; break;
-        }
-        blk = blk1;
-    }
-}
-
-
-/**
- * Calculate exponent strategies for all channels.
- * Array arrangement is reversed to simplify the per-channel calculation.
- */
-static void compute_exp_strategy(AC3EncodeContext *s)
-{
-    uint8_t *exp1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
-    uint8_t exp_str1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
-    int ch, blk;
-
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-            exp1[ch][blk]     = s->blocks[blk].exp[ch];
-            exp_str1[ch][blk] = s->blocks[blk].exp_strategy[ch];
-        }
-
-        compute_exp_strategy_ch(s, exp_str1[ch], exp1[ch]);
-
-        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
-            s->blocks[blk].exp_strategy[ch] = exp_str1[ch][blk];
-    }
-    if (s->lfe_on) {
-        ch = s->lfe_channel;
-        s->blocks[0].exp_strategy[ch] = EXP_D15;
-        for (blk = 1; blk < AC3_MAX_BLOCKS; blk++)
-            s->blocks[blk].exp_strategy[ch] = EXP_REUSE;
-    }
-}
-
-
-/**
- * Set each encoded exponent in a block to the minimum of itself and the
- * exponent in the same frequency bin of a following block.
- * exp[i] = min(exp[i], exp1[i]
- */
-static void exponent_min(uint8_t *exp, uint8_t *exp1, int n)
-{
-    int i;
-    for (i = 0; i < n; i++) {
-        if (exp1[i] < exp[i])
-            exp[i] = exp1[i];
-    }
-}
-
-
-/**
- * Update the exponents so that they are the ones the decoder will decode.
- */
-static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy)
-{
-    int nb_groups, i, k;
-
-    nb_groups = exponent_group_tab[exp_strategy-1][nb_exps] * 3;
-
-    /* for each group, compute the minimum exponent */
-    switch(exp_strategy) {
-    case EXP_D25:
-        for (i = 1, k = 1; i <= nb_groups; i++) {
-            uint8_t exp_min = exp[k];
-            if (exp[k+1] < exp_min)
-                exp_min = exp[k+1];
-            exp[i] = exp_min;
-            k += 2;
-        }
-        break;
-    case EXP_D45:
-        for (i = 1, k = 1; i <= nb_groups; i++) {
-            uint8_t exp_min = exp[k];
-            if (exp[k+1] < exp_min)
-                exp_min = exp[k+1];
-            if (exp[k+2] < exp_min)
-                exp_min = exp[k+2];
-            if (exp[k+3] < exp_min)
-                exp_min = exp[k+3];
-            exp[i] = exp_min;
-            k += 4;
-        }
-        break;
-    }
-
-    /* constraint for DC exponent */
-    if (exp[0] > 15)
-        exp[0] = 15;
-
-    /* decrease the delta between each groups to within 2 so that they can be
-       differentially encoded */
-    for (i = 1; i <= nb_groups; i++)
-        exp[i] = FFMIN(exp[i], exp[i-1] + 2);
-    i--;
-    while (--i >= 0)
-        exp[i] = FFMIN(exp[i], exp[i+1] + 2);
-
-    /* now we have the exponent values the decoder will see */
-    switch (exp_strategy) {
-    case EXP_D25:
-        for (i = nb_groups, k = nb_groups * 2; i > 0; i--) {
-            uint8_t exp1 = exp[i];
-            exp[k--] = exp1;
-            exp[k--] = exp1;
-        }
-        break;
-    case EXP_D45:
-        for (i = nb_groups, k = nb_groups * 4; i > 0; i--) {
-            exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i];
-            k -= 4;
-        }
-        break;
-    }
-}
-
-
-/**
- * Encode exponents from original extracted form to what the decoder will see.
- * This copies and groups exponents based on exponent strategy and reduces
- * deltas between adjacent exponent groups so that they can be differentially
- * encoded.
- */
-static void encode_exponents(AC3EncodeContext *s)
-{
-    int blk, blk1, blk2, ch;
-    AC3Block *block, *block1, *block2;
-
-    for (ch = 0; ch < s->channels; ch++) {
-        blk = 0;
-        block = &s->blocks[0];
-        while (blk < AC3_MAX_BLOCKS) {
-            blk1 = blk + 1;
-            block1 = block + 1;
-            /* for the EXP_REUSE case we select the min of the exponents */
-            while (blk1 < AC3_MAX_BLOCKS && block1->exp_strategy[ch] == EXP_REUSE) {
-                exponent_min(block->exp[ch], block1->exp[ch], s->nb_coefs[ch]);
-                blk1++;
-                block1++;
-            }
-            encode_exponents_blk_ch(block->exp[ch], s->nb_coefs[ch],
-                                    block->exp_strategy[ch]);
-            /* copy encoded exponents for reuse case */
-            block2 = block + 1;
-            for (blk2 = blk+1; blk2 < blk1; blk2++, block2++) {
-                memcpy(block2->exp[ch], block->exp[ch],
-                       s->nb_coefs[ch] * sizeof(uint8_t));
-            }
-            blk = blk1;
-            block = block1;
-        }
-    }
-}
-
-
-/**
- * Group exponents.
- * 3 delta-encoded exponents are in each 7-bit group. The number of groups
- * varies depending on exponent strategy and bandwidth.
- */
-static void group_exponents(AC3EncodeContext *s)
-{
-    int blk, ch, i;
-    int group_size, nb_groups, bit_count;
-    uint8_t *p;
-    int delta0, delta1, delta2;
-    int exp0, exp1;
-
-    bit_count = 0;
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        for (ch = 0; ch < s->channels; ch++) {
-            if (block->exp_strategy[ch] == EXP_REUSE) {
-                continue;
-            }
-            group_size = block->exp_strategy[ch] + (block->exp_strategy[ch] == EXP_D45);
-            nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]];
-            bit_count += 4 + (nb_groups * 7);
-            p = block->exp[ch];
-
-            /* DC exponent */
-            exp1 = *p++;
-            block->grouped_exp[ch][0] = exp1;
-
-            /* remaining exponents are delta encoded */
-            for (i = 1; i <= nb_groups; i++) {
-                /* merge three delta in one code */
-                exp0   = exp1;
-                exp1   = p[0];
-                p     += group_size;
-                delta0 = exp1 - exp0 + 2;
-
-                exp0   = exp1;
-                exp1   = p[0];
-                p     += group_size;
-                delta1 = exp1 - exp0 + 2;
-
-                exp0   = exp1;
-                exp1   = p[0];
-                p     += group_size;
-                delta2 = exp1 - exp0 + 2;
-
-                block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
-            }
-        }
-    }
-
-    s->exponent_bits = bit_count;
-}
-
-
-/**
- * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
- * Extract exponents from MDCT coefficients, calculate exponent strategies,
- * and encode final exponents.
- */
-static void process_exponents(AC3EncodeContext *s)
-{
-    extract_exponents(s);
-
-    compute_exp_strategy(s);
-
-    encode_exponents(s);
-
-    group_exponents(s);
-}
-
-
-/**
- * Count frame bits that are based solely on fixed parameters.
- * This only has to be run once when the encoder is initialized.
- */
-static void count_frame_bits_fixed(AC3EncodeContext *s)
-{
-    static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
-    int blk;
-    int frame_bits;
-
-    /* assumptions:
-     *   no dynamic range codes
-     *   no channel coupling
-     *   no rematrixing
-     *   bit allocation parameters do not change between blocks
-     *   SNR offsets do not change between blocks
-     *   no delta bit allocation
-     *   no skipped data
-     *   no auxilliary data
-     */
-
-    /* header size */
-    frame_bits = 65;
-    frame_bits += frame_bits_inc[s->channel_mode];
-
-    /* audio blocks */
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
-        if (s->channel_mode == AC3_CHMODE_STEREO) {
-            frame_bits++; /* rematstr */
-            if (!blk)
-                frame_bits += 4;
-        }
-        frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
-        if (s->lfe_on)
-            frame_bits++; /* lfeexpstr */
-        frame_bits++; /* baie */
-        frame_bits++; /* snr */
-        frame_bits += 2; /* delta / skip */
-    }
-    frame_bits++; /* cplinu for block 0 */
-    /* bit alloc info */
-    /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
-    /* csnroffset[6] */
-    /* (fsnoffset[4] + fgaincod[4]) * c */
-    frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);
-
-    /* auxdatae, crcrsv */
-    frame_bits += 2;
-
-    /* CRC */
-    frame_bits += 16;
-
-    s->frame_bits_fixed = frame_bits;
-}
-
-
-/**
- * Initialize bit allocation.
- * Set default parameter codes and calculate parameter values.
- */
-static void bit_alloc_init(AC3EncodeContext *s)
-{
-    int ch;
-
-    /* init default parameters */
-    s->slow_decay_code = 2;
-    s->fast_decay_code = 1;
-    s->slow_gain_code  = 1;
-    s->db_per_bit_code = 3;
-    s->floor_code      = 4;
-    for (ch = 0; ch < s->channels; ch++)
-        s->fast_gain_code[ch] = 4;
-
-    /* initial snr offset */
-    s->coarse_snr_offset = 40;
-
-    /* compute real values */
-    /* currently none of these values change during encoding, so we can just
-       set them once at initialization */
-    s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
-    s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
-    s->bit_alloc.slow_gain  = ff_ac3_slow_gain_tab[s->slow_gain_code];
-    s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
-    s->bit_alloc.floor      = ff_ac3_floor_tab[s->floor_code];
-
-    count_frame_bits_fixed(s);
-}
-
-
-/**
- * Count the bits used to encode the frame, minus exponents and mantissas.
- * Bits based on fixed parameters have already been counted, so now we just
- * have to add the bits based on parameters that change during encoding.
- */
-static void count_frame_bits(AC3EncodeContext *s)
-{
-    int blk, ch;
-    int frame_bits = 0;
-
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        uint8_t *exp_strategy = s->blocks[blk].exp_strategy;
-        for (ch = 0; ch < s->fbw_channels; ch++) {
-            if (exp_strategy[ch] != EXP_REUSE)
-                frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
-        }
-    }
-    s->frame_bits = s->frame_bits_fixed + frame_bits;
-}
-
-
-/**
- * Calculate the number of bits needed to encode a set of mantissas.
- */
-static int compute_mantissa_size(int mant_cnt[5], uint8_t *bap, int nb_coefs)
-{
-    int bits, b, i;
-
-    bits = 0;
-    for (i = 0; i < nb_coefs; i++) {
-        b = bap[i];
-        if (b <= 4) {
-            // bap=1 to bap=4 will be counted in compute_mantissa_size_final
-            mant_cnt[b]++;
-        } else if (b <= 13) {
-            // bap=5 to bap=13 use (bap-1) bits
-            bits += b - 1;
-        } else {
-            // bap=14 uses 14 bits and bap=15 uses 16 bits
-            bits += (b == 14) ? 14 : 16;
-        }
-    }
-    return bits;
-}
-
-
-/**
- * Finalize the mantissa bit count by adding in the grouped mantissas.
- */
-static int compute_mantissa_size_final(int mant_cnt[5])
-{
-    // bap=1 : 3 mantissas in 5 bits
-    int bits = (mant_cnt[1] / 3) * 5;
-    // bap=2 : 3 mantissas in 7 bits
-    // bap=4 : 2 mantissas in 7 bits
-    bits += ((mant_cnt[2] / 3) + (mant_cnt[4] >> 1)) * 7;
-    // bap=3 : each mantissa is 3 bits
-    bits += mant_cnt[3] * 3;
-    return bits;
-}
-
-
-/**
- * Calculate masking curve based on the final exponents.
- * Also calculate the power spectral densities to use in future calculations.
- */
-static void bit_alloc_masking(AC3EncodeContext *s)
-{
-    int blk, ch;
-
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        for (ch = 0; ch < s->channels; ch++) {
-            /* We only need psd and mask for calculating bap.
-               Since we currently do not calculate bap when exponent
-               strategy is EXP_REUSE we do not need to calculate psd or mask. */
-            if (block->exp_strategy[ch] != EXP_REUSE) {
-                ff_ac3_bit_alloc_calc_psd(block->exp[ch], 0,
-                                          s->nb_coefs[ch],
-                                          block->psd[ch], block->band_psd[ch]);
-                ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
-                                           0, s->nb_coefs[ch],
-                                           ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
-                                           ch == s->lfe_channel,
-                                           DBA_NONE, 0, NULL, NULL, NULL,
-                                           block->mask[ch]);
-            }
-        }
-    }
-}
-
-
-/**
- * Ensure that bap for each block and channel point to the current bap_buffer.
- * They may have been switched during the bit allocation search.
- */
-static void reset_block_bap(AC3EncodeContext *s)
-{
-    int blk, ch;
-    if (s->blocks[0].bap[0] == s->bap_buffer)
-        return;
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        for (ch = 0; ch < s->channels; ch++) {
-            s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)];
-        }
-    }
-}
-
-
-/**
- * Run the bit allocation with a given SNR offset.
- * This calculates the bit allocation pointers that will be used to determine
- * the quantization of each mantissa.
- * @return the number of bits needed for mantissas if the given SNR offset is
- *         is used.
- */
-static int bit_alloc(AC3EncodeContext *s, int snr_offset)
-{
-    int blk, ch;
-    int mantissa_bits;
-    int mant_cnt[5];
-
-    snr_offset = (snr_offset - 240) << 2;
-
-    reset_block_bap(s);
-    mantissa_bits = 0;
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        // initialize grouped mantissa counts. these are set so that they are
-        // padded to the next whole group size when bits are counted in
-        // compute_mantissa_size_final
-        mant_cnt[0] = mant_cnt[3] = 0;
-        mant_cnt[1] = mant_cnt[2] = 2;
-        mant_cnt[4] = 1;
-        for (ch = 0; ch < s->channels; ch++) {
-            /* Currently the only bit allocation parameters which vary across
-               blocks within a frame are the exponent values.  We can take
-               advantage of that by reusing the bit allocation pointers
-               whenever we reuse exponents. */
-            if (block->exp_strategy[ch] == EXP_REUSE) {
-                memcpy(block->bap[ch], s->blocks[blk-1].bap[ch], AC3_MAX_COEFS);
-            } else {
-                ff_ac3_bit_alloc_calc_bap(block->mask[ch], block->psd[ch], 0,
-                                          s->nb_coefs[ch], snr_offset,
-                                          s->bit_alloc.floor, ff_ac3_bap_tab,
-                                          block->bap[ch]);
-            }
-            mantissa_bits += compute_mantissa_size(mant_cnt, block->bap[ch], s->nb_coefs[ch]);
-        }
-        mantissa_bits += compute_mantissa_size_final(mant_cnt);
-    }
-    return mantissa_bits;
-}
-
-
-/**
- * Constant bitrate bit allocation search.
- * Find the largest SNR offset that will allow data to fit in the frame.
- */
-static int cbr_bit_allocation(AC3EncodeContext *s)
-{
-    int ch;
-    int bits_left;
-    int snr_offset, snr_incr;
-
-    bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
-
-    snr_offset = s->coarse_snr_offset << 4;
-
-    /* if previous frame SNR offset was 1023, check if current frame can also
-       use SNR offset of 1023. if so, skip the search. */
-    if ((snr_offset | s->fine_snr_offset[0]) == 1023) {
-        if (bit_alloc(s, 1023) <= bits_left)
-            return 0;
-    }
-
-    while (snr_offset >= 0 &&
-           bit_alloc(s, snr_offset) > bits_left) {
-        snr_offset -= 64;
-    }
-    if (snr_offset < 0)
-        return AVERROR(EINVAL);
-
-    FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
-    for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
-        while (snr_offset + snr_incr <= 1023 &&
-               bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
-            snr_offset += snr_incr;
-            FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
-        }
-    }
-    FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
-    reset_block_bap(s);
-
-    s->coarse_snr_offset = snr_offset >> 4;
-    for (ch = 0; ch < s->channels; ch++)
-        s->fine_snr_offset[ch] = snr_offset & 0xF;
-
-    return 0;
-}
-
-
-/**
- * Downgrade exponent strategies to reduce the bits used by the exponents.
- * This is a fallback for when bit allocation fails with the normal exponent
- * strategies.  Each time this function is run it only downgrades the
- * strategy in 1 channel of 1 block.
- * @return non-zero if downgrade was unsuccessful
- */
-static int downgrade_exponents(AC3EncodeContext *s)
-{
-    int ch, blk;
-
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
-            if (s->blocks[blk].exp_strategy[ch] == EXP_D15) {
-                s->blocks[blk].exp_strategy[ch] = EXP_D25;
-                return 0;
-            }
-        }
-    }
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) {
-            if (s->blocks[blk].exp_strategy[ch] == EXP_D25) {
-                s->blocks[blk].exp_strategy[ch] = EXP_D45;
-                return 0;
-            }
-        }
-    }
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        /* block 0 cannot reuse exponents, so only downgrade D45 to REUSE if
-           the block number > 0 */
-        for (blk = AC3_MAX_BLOCKS-1; blk > 0; blk--) {
-            if (s->blocks[blk].exp_strategy[ch] > EXP_REUSE) {
-                s->blocks[blk].exp_strategy[ch] = EXP_REUSE;
-                return 0;
-            }
-        }
-    }
-    return -1;
-}
-
-
-/**
- * Reduce the bandwidth to reduce the number of bits used for a given SNR offset.
- * This is a second fallback for when bit allocation still fails after exponents
- * have been downgraded.
- * @return non-zero if bandwidth reduction was unsuccessful
- */
-static int reduce_bandwidth(AC3EncodeContext *s, int min_bw_code)
-{
-    int ch;
-
-    if (s->bandwidth_code[0] > min_bw_code) {
-        for (ch = 0; ch < s->fbw_channels; ch++) {
-            s->bandwidth_code[ch]--;
-            s->nb_coefs[ch] = s->bandwidth_code[ch] * 3 + 73;
-        }
-        return 0;
-    }
-    return -1;
-}
-
-
-/**
- * Perform bit allocation search.
- * Finds the SNR offset value that maximizes quality and fits in the specified
- * frame size.  Output is the SNR offset and a set of bit allocation pointers
- * used to quantize the mantissas.
- */
-static int compute_bit_allocation(AC3EncodeContext *s)
-{
-    int ret;
-
-    count_frame_bits(s);
-
-    bit_alloc_masking(s);
-
-    ret = cbr_bit_allocation(s);
-    while (ret) {
-        /* fallback 1: downgrade exponents */
-        if (!downgrade_exponents(s)) {
-            extract_exponents(s);
-            encode_exponents(s);
-            group_exponents(s);
-            ret = compute_bit_allocation(s);
-            continue;
-        }
-
-        /* fallback 2: reduce bandwidth */
-        /* only do this if the user has not specified a specific cutoff
-           frequency */
-        if (!s->cutoff && !reduce_bandwidth(s, 0)) {
-            process_exponents(s);
-            ret = compute_bit_allocation(s);
-            continue;
-        }
-
-        /* fallbacks were not enough... */
-        break;
-    }
-
-    return ret;
-}
-
-
-/**
- * Symmetric quantization on 'levels' levels.
- */
-static inline int sym_quant(int c, int e, int levels)
-{
-    int v;
-
-    if (c >= 0) {
-        v = (levels * (c << e)) >> 24;
-        v = (v + 1) >> 1;
-        v = (levels >> 1) + v;
-    } else {
-        v = (levels * ((-c) << e)) >> 24;
-        v = (v + 1) >> 1;
-        v = (levels >> 1) - v;
-    }
-    assert(v >= 0 && v < levels);
-    return v;
-}
-
-
-/**
- * Asymmetric quantization on 2^qbits levels.
- */
-static inline int asym_quant(int c, int e, int qbits)
-{
-    int lshift, m, v;
-
-    lshift = e + qbits - 24;
-    if (lshift >= 0)
-        v = c << lshift;
-    else
-        v = c >> (-lshift);
-    /* rounding */
-    v = (v + 1) >> 1;
-    m = (1 << (qbits-1));
-    if (v >= m)
-        v = m - 1;
-    assert(v >= -m);
-    return v & ((1 << qbits)-1);
-}
-
-
-/**
- * Quantize a set of mantissas for a single channel in a single block.
- */
-static void quantize_mantissas_blk_ch(AC3EncodeContext *s, CoefType *mdct_coef,
-                                      int8_t exp_shift, uint8_t *exp,
-                                      uint8_t *bap, uint16_t *qmant, int n)
-{
-    int i;
-
-    for (i = 0; i < n; i++) {
-        int v;
-        int c = SCALE_COEF(mdct_coef[i]);
-        int e = exp[i] - exp_shift;
-        int b = bap[i];
-        switch (b) {
-        case 0:
-            v = 0;
-            break;
-        case 1:
-            v = sym_quant(c, e, 3);
-            switch (s->mant1_cnt) {
-            case 0:
-                s->qmant1_ptr = &qmant[i];
-                v = 9 * v;
-                s->mant1_cnt = 1;
-                break;
-            case 1:
-                *s->qmant1_ptr += 3 * v;
-                s->mant1_cnt = 2;
-                v = 128;
-                break;
-            default:
-                *s->qmant1_ptr += v;
-                s->mant1_cnt = 0;
-                v = 128;
-                break;
-            }
-            break;
-        case 2:
-            v = sym_quant(c, e, 5);
-            switch (s->mant2_cnt) {
-            case 0:
-                s->qmant2_ptr = &qmant[i];
-                v = 25 * v;
-                s->mant2_cnt = 1;
-                break;
-            case 1:
-                *s->qmant2_ptr += 5 * v;
-                s->mant2_cnt = 2;
-                v = 128;
-                break;
-            default:
-                *s->qmant2_ptr += v;
-                s->mant2_cnt = 0;
-                v = 128;
-                break;
-            }
-            break;
-        case 3:
-            v = sym_quant(c, e, 7);
-            break;
-        case 4:
-            v = sym_quant(c, e, 11);
-            switch (s->mant4_cnt) {
-            case 0:
-                s->qmant4_ptr = &qmant[i];
-                v = 11 * v;
-                s->mant4_cnt = 1;
-                break;
-            default:
-                *s->qmant4_ptr += v;
-                s->mant4_cnt = 0;
-                v = 128;
-                break;
-            }
-            break;
-        case 5:
-            v = sym_quant(c, e, 15);
-            break;
-        case 14:
-            v = asym_quant(c, e, 14);
-            break;
-        case 15:
-            v = asym_quant(c, e, 16);
-            break;
-        default:
-            v = asym_quant(c, e, b - 1);
-            break;
-        }
-        qmant[i] = v;
-    }
-}
-
-
-/**
- * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
- */
-static void quantize_mantissas(AC3EncodeContext *s)
-{
-    int blk, ch;
-
-
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        s->mant1_cnt  = s->mant2_cnt  = s->mant4_cnt  = 0;
-        s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL;
-
-        for (ch = 0; ch < s->channels; ch++) {
-            quantize_mantissas_blk_ch(s, block->mdct_coef[ch], block->exp_shift[ch],
-                                      block->exp[ch], block->bap[ch],
-                                      block->qmant[ch], s->nb_coefs[ch]);
-        }
-    }
-}
-
-
-/**
- * Write the AC-3 frame header to the output bitstream.
- */
-static void output_frame_header(AC3EncodeContext *s)
-{
-    put_bits(&s->pb, 16, 0x0b77);   /* frame header */
-    put_bits(&s->pb, 16, 0);        /* crc1: will be filled later */
-    put_bits(&s->pb, 2,  s->bit_alloc.sr_code);
-    put_bits(&s->pb, 6,  s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
-    put_bits(&s->pb, 5,  s->bitstream_id);
-    put_bits(&s->pb, 3,  s->bitstream_mode);
-    put_bits(&s->pb, 3,  s->channel_mode);
-    if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
-        put_bits(&s->pb, 2, 1);     /* XXX -4.5 dB */
-    if (s->channel_mode & 0x04)
-        put_bits(&s->pb, 2, 1);     /* XXX -6 dB */
-    if (s->channel_mode == AC3_CHMODE_STEREO)
-        put_bits(&s->pb, 2, 0);     /* surround not indicated */
-    put_bits(&s->pb, 1, s->lfe_on); /* LFE */
-    put_bits(&s->pb, 5, 31);        /* dialog norm: -31 db */
-    put_bits(&s->pb, 1, 0);         /* no compression control word */
-    put_bits(&s->pb, 1, 0);         /* no lang code */
-    put_bits(&s->pb, 1, 0);         /* no audio production info */
-    put_bits(&s->pb, 1, 0);         /* no copyright */
-    put_bits(&s->pb, 1, 1);         /* original bitstream */
-    put_bits(&s->pb, 1, 0);         /* no time code 1 */
-    put_bits(&s->pb, 1, 0);         /* no time code 2 */
-    put_bits(&s->pb, 1, 0);         /* no additional bit stream info */
-}
-
-
-/**
- * Write one audio block to the output bitstream.
- */
-static void output_audio_block(AC3EncodeContext *s, int block_num)
-{
-    int ch, i, baie, rbnd;
-    AC3Block *block = &s->blocks[block_num];
-
-    /* block switching */
-    for (ch = 0; ch < s->fbw_channels; ch++)
-        put_bits(&s->pb, 1, 0);
-
-    /* dither flags */
-    for (ch = 0; ch < s->fbw_channels; ch++)
-        put_bits(&s->pb, 1, 1);
-
-    /* dynamic range codes */
-    put_bits(&s->pb, 1, 0);
-
-    /* channel coupling */
-    if (!block_num) {
-        put_bits(&s->pb, 1, 1); /* coupling strategy present */
-        put_bits(&s->pb, 1, 0); /* no coupling strategy */
-    } else {
-        put_bits(&s->pb, 1, 0); /* no new coupling strategy */
-    }
-
-    /* stereo rematrixing */
-    if (s->channel_mode == AC3_CHMODE_STEREO) {
-        if (!block_num) {
-            /* first block must define rematrixing (rematstr) */
-            put_bits(&s->pb, 1, 1);
-
-            /* dummy rematrixing rematflg(1:4)=0 */
-            for (rbnd = 0; rbnd < 4; rbnd++)
-                put_bits(&s->pb, 1, 0);
-        } else {
-            /* no matrixing (but should be used in the future) */
-            put_bits(&s->pb, 1, 0);
-        }
-    }
-
-    /* exponent strategy */
-    for (ch = 0; ch < s->fbw_channels; ch++)
-        put_bits(&s->pb, 2, block->exp_strategy[ch]);
-    if (s->lfe_on)
-        put_bits(&s->pb, 1, block->exp_strategy[s->lfe_channel]);
-
-    /* bandwidth */
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        if (block->exp_strategy[ch] != EXP_REUSE)
-            put_bits(&s->pb, 6, s->bandwidth_code[ch]);
-    }
-
-    /* exponents */
-    for (ch = 0; ch < s->channels; ch++) {
-        int nb_groups;
-
-        if (block->exp_strategy[ch] == EXP_REUSE)
-            continue;
-
-        /* DC exponent */
-        put_bits(&s->pb, 4, block->grouped_exp[ch][0]);
-
-        /* exponent groups */
-        nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]];
-        for (i = 1; i <= nb_groups; i++)
-            put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
-
-        /* gain range info */
-        if (ch != s->lfe_channel)
-            put_bits(&s->pb, 2, 0);
-    }
-
-    /* bit allocation info */
-    baie = (block_num == 0);
-    put_bits(&s->pb, 1, baie);
-    if (baie) {
-        put_bits(&s->pb, 2, s->slow_decay_code);
-        put_bits(&s->pb, 2, s->fast_decay_code);
-        put_bits(&s->pb, 2, s->slow_gain_code);
-        put_bits(&s->pb, 2, s->db_per_bit_code);
-        put_bits(&s->pb, 3, s->floor_code);
-    }
-
-    /* snr offset */
-    put_bits(&s->pb, 1, baie);
-    if (baie) {
-        put_bits(&s->pb, 6, s->coarse_snr_offset);
-        for (ch = 0; ch < s->channels; ch++) {
-            put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
-            put_bits(&s->pb, 3, s->fast_gain_code[ch]);
-        }
-    }
-
-    put_bits(&s->pb, 1, 0); /* no delta bit allocation */
-    put_bits(&s->pb, 1, 0); /* no data to skip */
-
-    /* mantissas */
-    for (ch = 0; ch < s->channels; ch++) {
-        int b, q;
-        for (i = 0; i < s->nb_coefs[ch]; i++) {
-            q = block->qmant[ch][i];
-            b = block->bap[ch][i];
-            switch (b) {
-            case 0:                                         break;
-            case 1: if (q != 128) put_bits(&s->pb,   5, q); break;
-            case 2: if (q != 128) put_bits(&s->pb,   7, q); break;
-            case 3:               put_bits(&s->pb,   3, q); break;
-            case 4: if (q != 128) put_bits(&s->pb,   7, q); break;
-            case 14:              put_bits(&s->pb,  14, q); break;
-            case 15:              put_bits(&s->pb,  16, q); break;
-            default:              put_bits(&s->pb, b-1, q); break;
-            }
-        }
-    }
-}
-
-
-/** CRC-16 Polynomial */
-#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
-
-
-static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
-{
-    unsigned int c;
-
-    c = 0;
-    while (a) {
-        if (a & 1)
-            c ^= b;
-        a = a >> 1;
-        b = b << 1;
-        if (b & (1 << 16))
-            b ^= poly;
-    }
-    return c;
-}
-
-
-static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
-{
-    unsigned int r;
-    r = 1;
-    while (n) {
-        if (n & 1)
-            r = mul_poly(r, a, poly);
-        a = mul_poly(a, a, poly);
-        n >>= 1;
-    }
-    return r;
-}
-
-
-/**
- * Fill the end of the frame with 0's and compute the two CRCs.
- */
-static void output_frame_end(AC3EncodeContext *s)
-{
-    const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
-    int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
-    uint8_t *frame;
-
-    frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
-
-    /* pad the remainder of the frame with zeros */
-    flush_put_bits(&s->pb);
-    frame = s->pb.buf;
-    pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
-    assert(pad_bytes >= 0);
-    if (pad_bytes > 0)
-        memset(put_bits_ptr(&s->pb), 0, pad_bytes);
-
-    /* compute crc1 */
-    /* this is not so easy because it is at the beginning of the data... */
-    crc1    = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
-    crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
-    crc1    = mul_poly(crc_inv, crc1, CRC16_POLY);
-    AV_WB16(frame + 2, crc1);
-
-    /* compute crc2 */
-    crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
-                          s->frame_size - frame_size_58 - 3);
-    crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
-    /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
-    if (crc2 == 0x770B) {
-        frame[s->frame_size - 3] ^= 0x1;
-        crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
-    }
-    crc2 = av_bswap16(crc2);
-    AV_WB16(frame + s->frame_size - 2, crc2);
-}
-
-
-/**
- * Write the frame to the output bitstream.
- */
-static void output_frame(AC3EncodeContext *s, unsigned char *frame)
-{
-    int blk;
-
-    init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
-
-    output_frame_header(s);
-
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
-        output_audio_block(s, blk);
-
-    output_frame_end(s);
-}
-
-
-/**
- * Encode a single AC-3 frame.
- */
-static int ac3_encode_frame(AVCodecContext *avctx, unsigned char *frame,
-                            int buf_size, void *data)
-{
-    AC3EncodeContext *s = avctx->priv_data;
-    const SampleType *samples = data;
-    int ret;
-
-    if (s->bit_alloc.sr_code == 1)
-        adjust_frame_size(s);
-
-    deinterleave_input_samples(s, samples);
-
-    apply_mdct(s);
-
-    process_exponents(s);
-
-    ret = compute_bit_allocation(s);
-    if (ret) {
-        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
-        return ret;
-    }
-
-    quantize_mantissas(s);
-
-    output_frame(s, frame);
-
-    return s->frame_size;
-}
-
-
-/**
- * Finalize encoding and free any memory allocated by the encoder.
- */
-static av_cold int ac3_encode_close(AVCodecContext *avctx)
-{
-    int blk, ch;
-    AC3EncodeContext *s = avctx->priv_data;
-
-    for (ch = 0; ch < s->channels; ch++)
-        av_freep(&s->planar_samples[ch]);
-    av_freep(&s->planar_samples);
-    av_freep(&s->bap_buffer);
-    av_freep(&s->bap1_buffer);
-    av_freep(&s->mdct_coef_buffer);
-    av_freep(&s->exp_buffer);
-    av_freep(&s->grouped_exp_buffer);
-    av_freep(&s->psd_buffer);
-    av_freep(&s->band_psd_buffer);
-    av_freep(&s->mask_buffer);
-    av_freep(&s->qmant_buffer);
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        av_freep(&block->bap);
-        av_freep(&block->mdct_coef);
-        av_freep(&block->exp);
-        av_freep(&block->grouped_exp);
-        av_freep(&block->psd);
-        av_freep(&block->band_psd);
-        av_freep(&block->mask);
-        av_freep(&block->qmant);
-    }
-
-    mdct_end(&s->mdct);
-
-    av_freep(&avctx->coded_frame);
-    return 0;
-}
-
-
-/**
- * Set channel information during initialization.
- */
-static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
-                                    int64_t *channel_layout)
-{
-    int ch_layout;
-
-    if (channels < 1 || channels > AC3_MAX_CHANNELS)
-        return AVERROR(EINVAL);
-    if ((uint64_t)*channel_layout > 0x7FF)
-        return AVERROR(EINVAL);
-    ch_layout = *channel_layout;
-    if (!ch_layout)
-        ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
-    if (av_get_channel_layout_nb_channels(ch_layout) != channels)
-        return AVERROR(EINVAL);
-
-    s->lfe_on       = !!(ch_layout & AV_CH_LOW_FREQUENCY);
-    s->channels     = channels;
-    s->fbw_channels = channels - s->lfe_on;
-    s->lfe_channel  = s->lfe_on ? s->fbw_channels : -1;
-    if (s->lfe_on)
-        ch_layout -= AV_CH_LOW_FREQUENCY;
-
-    switch (ch_layout) {
-    case AV_CH_LAYOUT_MONO:           s->channel_mode = AC3_CHMODE_MONO;   break;
-    case AV_CH_LAYOUT_STEREO:         s->channel_mode = AC3_CHMODE_STEREO; break;
-    case AV_CH_LAYOUT_SURROUND:       s->channel_mode = AC3_CHMODE_3F;     break;
-    case AV_CH_LAYOUT_2_1:            s->channel_mode = AC3_CHMODE_2F1R;   break;
-    case AV_CH_LAYOUT_4POINT0:        s->channel_mode = AC3_CHMODE_3F1R;   break;
-    case AV_CH_LAYOUT_QUAD:
-    case AV_CH_LAYOUT_2_2:            s->channel_mode = AC3_CHMODE_2F2R;   break;
-    case AV_CH_LAYOUT_5POINT0:
-    case AV_CH_LAYOUT_5POINT0_BACK:   s->channel_mode = AC3_CHMODE_3F2R;   break;
-    default:
-        return AVERROR(EINVAL);
-    }
-
-    s->channel_map  = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
-    *channel_layout = ch_layout;
-    if (s->lfe_on)
-        *channel_layout |= AV_CH_LOW_FREQUENCY;
-
-    return 0;
-}
-
-
-static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s)
-{
-    int i, ret;
-
-    /* validate channel layout */
-    if (!avctx->channel_layout) {
-        av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
-                                      "encoder will guess the layout, but it "
-                                      "might be incorrect.\n");
-    }
-    ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
-    if (ret) {
-        av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
-        return ret;
-    }
-
-    /* validate sample rate */
-    for (i = 0; i < 9; i++) {
-        if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate)
-            break;
-    }
-    if (i == 9) {
-        av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
-        return AVERROR(EINVAL);
-    }
-    s->sample_rate        = avctx->sample_rate;
-    s->bit_alloc.sr_shift = i % 3;
-    s->bit_alloc.sr_code  = i / 3;
-
-    /* validate bit rate */
-    for (i = 0; i < 19; i++) {
-        if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate)
-            break;
-    }
-    if (i == 19) {
-        av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
-        return AVERROR(EINVAL);
-    }
-    s->bit_rate        = avctx->bit_rate;
-    s->frame_size_code = i << 1;
-
-    /* validate cutoff */
-    if (avctx->cutoff < 0) {
-        av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
-        return AVERROR(EINVAL);
-    }
-    s->cutoff = avctx->cutoff;
-    if (s->cutoff > (s->sample_rate >> 1))
-        s->cutoff = s->sample_rate >> 1;
-
-    return 0;
-}
-
-
-/**
- * Set bandwidth for all channels.
- * The user can optionally supply a cutoff frequency. Otherwise an appropriate
- * default value will be used.
- */
-static av_cold void set_bandwidth(AC3EncodeContext *s)
-{
-    int ch, bw_code;
-
-    if (s->cutoff) {
-        /* calculate bandwidth based on user-specified cutoff frequency */
-        int fbw_coeffs;
-        fbw_coeffs     = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
-        bw_code        = av_clip((fbw_coeffs - 73) / 3, 0, 60);
-    } else {
-        /* use default bandwidth setting */
-        /* XXX: should compute the bandwidth according to the frame
-           size, so that we avoid annoying high frequency artifacts */
-        bw_code = 50;
-    }
-
-    /* set number of coefficients for each channel */
-    for (ch = 0; ch < s->fbw_channels; ch++) {
-        s->bandwidth_code[ch] = bw_code;
-        s->nb_coefs[ch]       = bw_code * 3 + 73;
-    }
-    if (s->lfe_on)
-        s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */
-}
-
-
-static av_cold int allocate_buffers(AVCodecContext *avctx)
-{
-    int blk, ch;
-    AC3EncodeContext *s = avctx->priv_data;
-
-    FF_ALLOC_OR_GOTO(avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
-                     alloc_fail);
-    for (ch = 0; ch < s->channels; ch++) {
-        FF_ALLOCZ_OR_GOTO(avctx, s->planar_samples[ch],
-                          (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
-                          alloc_fail);
-    }
-    FF_ALLOC_OR_GOTO(avctx, s->bap_buffer,  AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->bap_buffer),  alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->bap1_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->mdct_coef_buffer, AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->mdct_coef_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->exp_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, AC3_MAX_BLOCKS * s->channels *
-                     128 * sizeof(*s->grouped_exp_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->psd_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, AC3_MAX_BLOCKS * s->channels *
-                     64 * sizeof(*s->band_psd_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, AC3_MAX_BLOCKS * s->channels *
-                     64 * sizeof(*s->mask_buffer), alloc_fail);
-    FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, AC3_MAX_BLOCKS * s->channels *
-                     AC3_MAX_COEFS * sizeof(*s->qmant_buffer), alloc_fail);
-    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
-        AC3Block *block = &s->blocks[blk];
-        FF_ALLOC_OR_GOTO(avctx, block->bap, s->channels * sizeof(*block->bap),
-                         alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, s->channels * sizeof(*block->mdct_coef),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->exp, s->channels * sizeof(*block->exp),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, s->channels * sizeof(*block->grouped_exp),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->psd, s->channels * sizeof(*block->psd),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, s->channels * sizeof(*block->band_psd),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->mask, s->channels * sizeof(*block->mask),
-                          alloc_fail);
-        FF_ALLOCZ_OR_GOTO(avctx, block->qmant, s->channels * sizeof(*block->qmant),
-                          alloc_fail);
-
-        for (ch = 0; ch < s->channels; ch++) {
-            block->bap[ch]         = &s->bap_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
-            block->mdct_coef[ch]   = &s->mdct_coef_buffer  [AC3_MAX_COEFS * (blk * s->channels + ch)];
-            block->exp[ch]         = &s->exp_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
-            block->grouped_exp[ch] = &s->grouped_exp_buffer[128           * (blk * s->channels + ch)];
-            block->psd[ch]         = &s->psd_buffer        [AC3_MAX_COEFS * (blk * s->channels + ch)];
-            block->band_psd[ch]    = &s->band_psd_buffer   [64            * (blk * s->channels + ch)];
-            block->mask[ch]        = &s->mask_buffer       [64            * (blk * s->channels + ch)];
-            block->qmant[ch]       = &s->qmant_buffer      [AC3_MAX_COEFS * (blk * s->channels + ch)];
-        }
-    }
-
-    return 0;
-alloc_fail:
-    return AVERROR(ENOMEM);
-}
-
-
-/**
- * Initialize the encoder.
- */
-static av_cold int ac3_encode_init(AVCodecContext *avctx)
-{
-    AC3EncodeContext *s = avctx->priv_data;
-    int ret, frame_size_58;
-
-    avctx->frame_size = AC3_FRAME_SIZE;
-
-    ac3_common_init();
-
-    ret = validate_options(avctx, s);
-    if (ret)
-        return ret;
-
-    s->bitstream_id   = 8 + s->bit_alloc.sr_shift;
-    s->bitstream_mode = 0; /* complete main audio service */
-
-    s->frame_size_min  = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
-    s->bits_written    = 0;
-    s->samples_written = 0;
-    s->frame_size      = s->frame_size_min;
-
-    /* calculate crc_inv for both possible frame sizes */
-    frame_size_58 = (( s->frame_size    >> 2) + ( s->frame_size    >> 4)) << 1;
-    s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
-    if (s->bit_alloc.sr_code == 1) {
-        frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
-        s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
-    }
-
-    set_bandwidth(s);
-
-    exponent_init(s);
-
-    bit_alloc_init(s);
-
-    ret = mdct_init(avctx, &s->mdct, 9);
-    if (ret)
-        goto init_fail;
-
-    ret = allocate_buffers(avctx);
-    if (ret)
-        goto init_fail;
-
-    avctx->coded_frame= avcodec_alloc_frame();
-
-    dsputil_init(&s->dsp, avctx);
-
-    return 0;
-init_fail:
-    ac3_encode_close(avctx);
-    return ret;
-}
-
-
-#ifdef TEST
-/*************************************************************************/
-/* TEST */
-
-#include "libavutil/lfg.h"
-
-#define MDCT_NBITS 9
-#define MDCT_SAMPLES (1 << MDCT_NBITS)
-#define FN (MDCT_SAMPLES/4)
-
-
-static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg)
-{
-    IComplex in[FN], in1[FN];
-    int k, n, i;
-    float sum_re, sum_im, a;
-
-    for (i = 0; i < FN; i++) {
-        in[i].re = av_lfg_get(lfg) % 65535 - 32767;
-        in[i].im = av_lfg_get(lfg) % 65535 - 32767;
-        in1[i]   = in[i];
-    }
-    fft(mdct, in, 7);
-
-    /* do it by hand */
-    for (k = 0; k < FN; k++) {
-        sum_re = 0;
-        sum_im = 0;
-        for (n = 0; n < FN; n++) {
-            a = -2 * M_PI * (n * k) / FN;
-            sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
-            sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
-        }
-        av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
-               k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
-    }
-}
-
-
-static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg)
-{
-    int16_t input[MDCT_SAMPLES];
-    int32_t output[AC3_MAX_COEFS];
-    float input1[MDCT_SAMPLES];
-    float output1[AC3_MAX_COEFS];
-    float s, a, err, e, emax;
-    int i, k, n;
-
-    for (i = 0; i < MDCT_SAMPLES; i++) {
-        input[i]  = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
-        input1[i] = input[i];
-    }
-
-    mdct512(mdct, output, input);
-
-    /* do it by hand */
-    for (k = 0; k < AC3_MAX_COEFS; k++) {
-        s = 0;
-        for (n = 0; n < MDCT_SAMPLES; n++) {
-            a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
-            s += input1[n] * cos(a);
-        }
-        output1[k] = -2 * s / MDCT_SAMPLES;
-    }
-
-    err  = 0;
-    emax = 0;
-    for (i = 0; i < AC3_MAX_COEFS; i++) {
-        av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
-        e = output[i] - output1[i];
-        if (e > emax)
-            emax = e;
-        err += e * e;
-    }
-    av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
-}
-
-
-int main(void)
-{
-    AVLFG lfg;
-    AC3MDCTContext mdct;
-
-    mdct.avctx = NULL;
-    av_log_set_level(AV_LOG_DEBUG);
-    mdct_init(&mdct, 9);
-
-    fft_test(&mdct, &lfg);
-    mdct_test(&mdct, &lfg);
-
-    return 0;
-}
-#endif /* TEST */
-
-
-AVCodec ac3_encoder = {
-    "ac3",
-    AVMEDIA_TYPE_AUDIO,
-    CODEC_ID_AC3,
-    sizeof(AC3EncodeContext),
-    ac3_encode_init,
-    ac3_encode_frame,
-    ac3_encode_close,
-    NULL,
-    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
-    .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
-    .channel_layouts = ac3_channel_layouts,
-};
+#endif /* AVCODEC_AC3ENC_FIXED_H */



More information about the ffmpeg-cvslog mailing list