[FFmpeg-cvslog] aacenc: Finish 3GPP psymodel analysis for non mid/side cases.
Nathan Caldwell
git at videolan.org
Sun Apr 24 03:50:09 CEST 2011
ffmpeg | branch: master | Nathan Caldwell <saintdev at gmail.com> | Wed Jan 5 01:32:16 2011 -0700| [230c1a90754860719b017a9ea4627dc81f67ff6e] | committer: Martin Storsjö
aacenc: Finish 3GPP psymodel analysis for non mid/side cases.
There is still are still a few sections missing relating to TNS (not present)
and mid/side (contains other bugs).
Overall this improves quality, and vastly improves rate-control.
Signed-off-by: Martin Storsjö <martin at martin.st>
> http://git.videolan.org/gitweb.cgi/ffmpeg.git/?a=commit;h=230c1a90754860719b017a9ea4627dc81f67ff6e
---
libavcodec/aacenc.c | 4 +-
libavcodec/aacpsy.c | 305 ++++++++++++++++++++++++++++++++++++++++++++++++++-
2 files changed, 303 insertions(+), 6 deletions(-)
diff --git a/libavcodec/aacenc.c b/libavcodec/aacenc.c
index d4b6112..4ec76d0 100644
--- a/libavcodec/aacenc.c
+++ b/libavcodec/aacenc.c
@@ -606,8 +606,10 @@ static int aac_encode_frame(AVCodecContext *avctx,
}
frame_bits = put_bits_count(&s->pb);
- if (frame_bits <= 6144 * avctx->channels - 3)
+ if (frame_bits <= 6144 * avctx->channels - 3) {
+ s->psy.bitres.bits = frame_bits / avctx->channels;
break;
+ }
s->lambda *= avctx->bit_rate * 1024.0f / avctx->sample_rate / frame_bits;
diff --git a/libavcodec/aacpsy.c b/libavcodec/aacpsy.c
index 4250a5d..98be176 100644
--- a/libavcodec/aacpsy.c
+++ b/libavcodec/aacpsy.c
@@ -30,7 +30,6 @@
/***********************************
* TODOs:
- * thresholds linearization after their modifications for attaining given bitrate
* try other bitrate controlling mechanism (maybe use ratecontrol.c?)
* control quality for quality-based output
**********************************/
@@ -41,10 +40,51 @@
*/
#define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
#define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
+/* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
+#define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
+/* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
+#define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
+/* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
+#define PSY_3GPP_EN_SPREAD_HI_S 1.5f
+/* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
+#define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
+/* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
+#define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
#define PSY_3GPP_RPEMIN 0.01f
#define PSY_3GPP_RPELEV 2.0f
+#define PSY_3GPP_C1 3.0f /* log2(8) */
+#define PSY_3GPP_C2 1.3219281f /* log2(2.5) */
+#define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */
+
+#define PSY_SNR_1DB 7.9432821e-1f /* -1dB */
+#define PSY_SNR_25DB 3.1622776e-3f /* -25dB */
+
+#define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
+#define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
+#define PSY_3GPP_SAVE_ADD_L -0.84285712f
+#define PSY_3GPP_SAVE_ADD_S -0.75f
+#define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
+#define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
+#define PSY_3GPP_SPEND_ADD_L -0.35f
+#define PSY_3GPP_SPEND_ADD_S -0.26111111f
+#define PSY_3GPP_CLIP_LO_L 0.2f
+#define PSY_3GPP_CLIP_LO_S 0.2f
+#define PSY_3GPP_CLIP_HI_L 0.95f
+#define PSY_3GPP_CLIP_HI_S 0.75f
+
+#define PSY_3GPP_AH_THR_LONG 0.5f
+#define PSY_3GPP_AH_THR_SHORT 0.63f
+
+enum {
+ PSY_3GPP_AH_NONE,
+ PSY_3GPP_AH_INACTIVE,
+ PSY_3GPP_AH_ACTIVE
+};
+
+#define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
+
/* LAME psy model constants */
#define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
#define AAC_BLOCK_SIZE_LONG 1024 ///< long block size
@@ -63,6 +103,12 @@ typedef struct AacPsyBand{
float energy; ///< band energy
float thr; ///< energy threshold
float thr_quiet; ///< threshold in quiet
+ float nz_lines; ///< number of non-zero spectral lines
+ float active_lines; ///< number of active spectral lines
+ float pe; ///< perceptual entropy
+ float pe_const; ///< constant part of the PE calculation
+ float norm_fac; ///< normalization factor for linearization
+ int avoid_holes; ///< hole avoidance flag
}AacPsyBand;
/**
@@ -97,6 +143,15 @@ typedef struct AacPsyCoeffs{
* 3GPP TS26.403-inspired psychoacoustic model specific data
*/
typedef struct AacPsyContext{
+ int chan_bitrate; ///< bitrate per channel
+ int frame_bits; ///< average bits per frame
+ int fill_level; ///< bit reservoir fill level
+ struct {
+ float min; ///< minimum allowed PE for bit factor calculation
+ float max; ///< maximum allowed PE for bit factor calculation
+ float previous; ///< allowed PE of the previous frame
+ float correction; ///< PE correction factor
+ } pe;
AacPsyCoeffs psy_coef[2][64];
AacPsyChannel *ch;
}AacPsyContext;
@@ -235,16 +290,33 @@ static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
AacPsyContext *pctx;
float bark;
int i, j, g, start;
- float prev, minscale, minath;
+ float prev, minscale, minath, minsnr, pe_min;
+ const int chan_bitrate = ctx->avctx->bit_rate / ctx->avctx->channels;
+ const int bandwidth = ctx->avctx->cutoff ? ctx->avctx->cutoff : ctx->avctx->sample_rate / 2;
+ const float num_bark = calc_bark((float)bandwidth);
ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
pctx = (AacPsyContext*) ctx->model_priv_data;
+ pctx->chan_bitrate = chan_bitrate;
+ pctx->frame_bits = chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate;
+ pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
+ pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
+ ctx->bitres.size = 6144 - pctx->frame_bits;
+ ctx->bitres.size -= ctx->bitres.size % 8;
+ pctx->fill_level = ctx->bitres.size;
minath = ath(3410, ATH_ADD);
for (j = 0; j < 2; j++) {
AacPsyCoeffs *coeffs = pctx->psy_coef[j];
const uint8_t *band_sizes = ctx->bands[j];
float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
+ float avg_chan_bits = chan_bitrate / ctx->avctx->sample_rate * (j ? 128.0f : 1024.0f);
+ /* reference encoder uses 2.4% here instead of 60% like the spec says */
+ float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
+ float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
+ /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
+ float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
+
i = 0;
prev = 0.0;
for (g = 0; g < ctx->num_bands[j]; g++) {
@@ -258,6 +330,11 @@ static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
float bark_width = coeffs[g+1].barks - coeffs->barks;
coeff->spread_low[0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_LOW);
coeff->spread_hi [0] = pow(10.0, -bark_width * PSY_3GPP_THR_SPREAD_HI);
+ coeff->spread_low[1] = pow(10.0, -bark_width * en_spread_low);
+ coeff->spread_hi [1] = pow(10.0, -bark_width * en_spread_hi);
+ pe_min = bark_pe * bark_width;
+ minsnr = pow(2.0f, pe_min / band_sizes[g]) - 1.5f;
+ coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
}
start = 0;
for (g = 0; g < ctx->num_bands[j]; g++) {
@@ -385,6 +462,97 @@ static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
return wi;
}
+/* 5.6.1.2 "Calculation of Bit Demand" */
+static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
+ int short_window)
+{
+ const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L;
+ const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L;
+ const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
+ const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L;
+ const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L;
+ const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L;
+ float clipped_pe, bit_save, bit_spend, bit_factor, fill_level;
+
+ ctx->fill_level += ctx->frame_bits - bits;
+ ctx->fill_level = av_clip(ctx->fill_level, 0, size);
+ fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
+ clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
+ bit_save = (fill_level + bitsave_add) * bitsave_slope;
+ assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
+ bit_spend = (fill_level + bitspend_add) * bitspend_slope;
+ assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
+ /* The bit factor graph in the spec is obviously incorrect.
+ * bit_spend + ((bit_spend - bit_spend))...
+ * The reference encoder subtracts everything from 1, but also seems incorrect.
+ * 1 - bit_save + ((bit_spend + bit_save))...
+ * Hopefully below is correct.
+ */
+ bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
+ /* NOTE: The reference encoder attempts to center pe max/min around the current pe. */
+ ctx->pe.max = FFMAX(pe, ctx->pe.max);
+ ctx->pe.min = FFMIN(pe, ctx->pe.min);
+
+ return FFMIN(ctx->frame_bits * bit_factor, ctx->frame_bits + size - bits);
+}
+
+static float calc_pe_3gpp(AacPsyBand *band)
+{
+ float pe, a;
+
+ band->pe = 0.0f;
+ band->pe_const = 0.0f;
+ band->active_lines = 0.0f;
+ if (band->energy > band->thr) {
+ a = log2f(band->energy);
+ pe = a - log2f(band->thr);
+ band->active_lines = band->nz_lines;
+ if (pe < PSY_3GPP_C1) {
+ pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
+ a = a * PSY_3GPP_C3 + PSY_3GPP_C2;
+ band->active_lines *= PSY_3GPP_C3;
+ }
+ band->pe = pe * band->nz_lines;
+ band->pe_const = a * band->nz_lines;
+ }
+
+ return band->pe;
+}
+
+static float calc_reduction_3gpp(float a, float desired_pe, float pe,
+ float active_lines)
+{
+ float thr_avg, reduction;
+
+ thr_avg = powf(2.0f, (a - pe) / (4.0f * active_lines));
+ reduction = powf(2.0f, (a - desired_pe) / (4.0f * active_lines)) - thr_avg;
+
+ return FFMAX(reduction, 0.0f);
+}
+
+static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
+ float reduction)
+{
+ float thr = band->thr;
+
+ if (band->energy > thr) {
+ thr = powf(thr, 0.25f) + reduction;
+ thr = powf(thr, 4.0f);
+
+ /* This deviates from the 3GPP spec to match the reference encoder.
+ * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
+ * that have hole avoidance on (active or inactive). It always reduces the
+ * threshold of bands with hole avoidance off.
+ */
+ if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
+ thr = FFMAX(band->thr, band->energy * min_snr);
+ band->avoid_holes = PSY_3GPP_AH_ACTIVE;
+ }
+ }
+
+ return thr;
+}
+
/**
* Calculate band thresholds as suggested in 3GPP TS26.403
*/
@@ -395,18 +563,27 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
AacPsyChannel *pch = &pctx->ch[channel];
int start = 0;
int i, w, g;
+ float desired_bits, desired_pe, delta_pe, reduction, spread_en[128] = {0};
+ float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
+ float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
const int num_bands = ctx->num_bands[wi->num_windows == 8];
const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
+ const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
//calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
for (w = 0; w < wi->num_windows*16; w += 16) {
for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &pch->band[w+g];
+ float form_factor = 0.0f;
band->energy = 0.0f;
- for (i = 0; i < band_sizes[g]; i++)
+ for (i = 0; i < band_sizes[g]; i++) {
band->energy += coefs[start+i] * coefs[start+i];
+ form_factor += sqrtf(fabs(coefs[start+i]));
+ }
band->thr = band->energy * 0.001258925f;
+ band->nz_lines = form_factor / powf(band->energy / band_sizes[g], 0.25f);
+
start += band_sizes[g];
}
}
@@ -414,10 +591,15 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
for (w = 0; w < wi->num_windows*16; w += 16) {
AacPsyBand *bands = &pch->band[w];
//5.4.2.3 "Spreading" & 5.4.3 "Spreaded Energy Calculation"
- for (g = 1; g < num_bands; g++)
+ spread_en[0] = bands[0].energy;
+ for (g = 1; g < num_bands; g++) {
bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]);
- for (g = num_bands - 2; g >= 0; g--)
+ spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
+ }
+ for (g = num_bands - 2; g >= 0; g--) {
bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]);
+ spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
+ }
//5.4.2.4 "Threshold in quiet"
for (g = 0; g < num_bands; g++) {
AacPsyBand *band = &bands[g];
@@ -426,6 +608,119 @@ static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w)))
band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
+
+ /* 5.6.1.3.1 "Prepatory steps of the perceptual entropy calculation" */
+ pe += calc_pe_3gpp(band);
+ a += band->pe_const;
+ active_lines += band->active_lines;
+
+ /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
+ if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
+ band->avoid_holes = PSY_3GPP_AH_NONE;
+ else
+ band->avoid_holes = PSY_3GPP_AH_INACTIVE;
+ }
+ }
+
+ /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
+ ctx->pe[channel] = pe;
+ desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
+ desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
+ /* NOTE: PE correction is kept simple. During initial testing it had very
+ * little effect on the final bitrate. Probably a good idea to come
+ * back and do more testing later.
+ */
+ if (ctx->bitres.bits > 0)
+ desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
+ 0.85f, 1.15f);
+ pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
+
+ if (desired_pe < pe) {
+ /* 5.6.1.3.4 "First Estimation of the reduction value" */
+ for (w = 0; w < wi->num_windows*16; w += 16) {
+ reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
+ pe = 0.0f;
+ a = 0.0f;
+ active_lines = 0.0f;
+ for (g = 0; g < num_bands; g++) {
+ AacPsyBand *band = &pch->band[w+g];
+
+ band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
+ /* recalculate PE */
+ pe += calc_pe_3gpp(band);
+ a += band->pe_const;
+ active_lines += band->active_lines;
+ }
+ }
+
+ /* 5.6.1.3.5 "Second Estimation of the reduction value" */
+ for (i = 0; i < 2; i++) {
+ float pe_no_ah = 0.0f, desired_pe_no_ah;
+ active_lines = a = 0.0f;
+ for (w = 0; w < wi->num_windows*16; w += 16) {
+ for (g = 0; g < num_bands; g++) {
+ AacPsyBand *band = &pch->band[w+g];
+
+ if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
+ pe_no_ah += band->pe;
+ a += band->pe_const;
+ active_lines += band->active_lines;
+ }
+ }
+ }
+ desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
+ if (active_lines > 0.0f)
+ reduction += calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
+
+ pe = 0.0f;
+ for (w = 0; w < wi->num_windows*16; w += 16) {
+ for (g = 0; g < num_bands; g++) {
+ AacPsyBand *band = &pch->band[w+g];
+
+ if (active_lines > 0.0f)
+ band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
+ pe += calc_pe_3gpp(band);
+ band->norm_fac = band->active_lines / band->thr;
+ norm_fac += band->norm_fac;
+ }
+ }
+ delta_pe = desired_pe - pe;
+ if (fabs(delta_pe) > 0.05f * desired_pe)
+ break;
+ }
+
+ if (pe < 1.15f * desired_pe) {
+ /* 6.6.1.3.6 "Final threshold modification by linearization" */
+ norm_fac = 1.0f / norm_fac;
+ for (w = 0; w < wi->num_windows*16; w += 16) {
+ for (g = 0; g < num_bands; g++) {
+ AacPsyBand *band = &pch->band[w+g];
+
+ if (band->active_lines > 0.5f) {
+ float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
+ float thr = band->thr;
+
+ thr *= powf(2.0f, delta_sfb_pe / band->active_lines);
+ if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
+ thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
+ band->thr = thr;
+ }
+ }
+ }
+ } else {
+ /* 5.6.1.3.7 "Further perceptual entropy reduction" */
+ g = num_bands;
+ while (pe > desired_pe && g--) {
+ for (w = 0; w < wi->num_windows*16; w+= 16) {
+ AacPsyBand *band = &pch->band[w+g];
+ if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
+ coeffs[g].min_snr = PSY_SNR_1DB;
+ band->thr = band->energy * PSY_SNR_1DB;
+ pe += band->active_lines * 1.5f - band->pe;
+ }
+ }
+ }
+ /* TODO: allow more holes (unused without mid/side) */
}
}
More information about the ffmpeg-cvslog
mailing list